PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Fifth Semester)

Branch - MATHEMATICS

ALGEBRA - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define a mapping with an example.
- 2 Define subgroup of G and right coset of H in G.
- 3 Define the subgroup HK.
- 4 Define normal subgroup.
- 5 Define an automorphism of a group.
- Define even permutation and if S has 9 elements and find the value of (1, 2, 3) (5, 6, 4, 1, 8).
- 7 Define zero-divisor and an integral domain.
- 8 Define homomorphism and Kernel of a homomorphism.
- 9 Define Maximal ideal of R.
- 10 Prove that a Euclidean ring possesses a unit elt.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

If G is a group, then prove the following (i) The identity elt of G is unique (ii) Every $a \in G$ has a unique inverse in G (iii) For every $a \in G$, $(a^{-1})^{-1} = a$.

OR

- b Define the order of an element $a \in G$ and prove that if G is a finite group and $a \in G$, then 0 (a) / 0 (G).
- 12 a Prove that HK is a subgroup of G if and only if HK = KH.

OR

- b Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$.
- Prove that if G is a group then A(G), the set of auto morphisms of G, is also a group.

OR

- b Prove that every permutation is the product of its cycles.
- 14 a Prove that a finite integral domain is a field.

OR

If ϕ is a homomorphism of R into 'R' with Kernel I(ϕ), then prove that (i) I ϕ is a subgroup of R under addition (ii) If $a \in I(\phi)$ and $r \in R$ then both ar and ra are in I(ϕ).

Cont ...

Prove that if R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if $\frac{R}{M}$ is a field.

OR

b Let R be a Euclidean ring and a, $b \in R$. If $b \neq 0$ is not a unit in R, then prove that d(a) < d(ab).

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Let G be the set of all 2 x 2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are real numbers such that ad bc \neq 0. Prove that G is an infinite, non-abelian group with respect multiplication.
- Prove that if ϕ is a homomorphism of G into \overline{G} with Kernel K, then K is a normal subgroup of G.
- 18 State and prove Cayley's theorem.
- Prove that if U is an ideal of the ring R, then $\frac{R}{U}$ is a ring and is a homomorphic image of R.
- 20 i) Let R be a Euclidean ring. Then prove that any two elements a and b in R have a greatest common divisor d. Also prove that $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.
 - ii) Let R be a Euclidean ring. Then prove that every element in R is either a unit in R or can be written as the product of a finite number of prime elements of R.

Z-Z-Z

END