PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(First/Second Semester)

Branch - **BIOTECHNOLOGY**

ENZYMOLOGY

	<u>E1(2/1)</u>	MOLOGI			
Time:	Three Hours		Maximum:	75 Marks	
SECTION-A (10 Marks) Answer ALL questions ALL questions carry EQUAL marks $(10 \times 1 = 10)$					
1	Non-protein part of an enzyme is (i) co-enzyme (iii) substrate	called (ii) co-factor (iv) activator			
2	An enzyme which is devoid of its designates as (i) holoenzyme (iii) substrate	either prosthet (ii) apoenzyme (iv) coenzyme	ie	o-enzyme is	
3	Biological catalyst to convert Hyand Oxygen (0_2) is (i) amylase (iii) catalase	drogen Peroxido (ii) hydrolase (iv) protease	, <u>2</u> <u>2</u> ,	Water (H ₂ 0)	
4	Some of the enzymes, which are carbohydrates, are present in (i) microsomes (iii) liposomes	associated in co (ii) glyoxysor (iv) golgi bodi	nes	s into	
5	The catalytic efficiency of two di (i) formation of the product (ii) (iii) Km value	-	imum value	-	
6 • TI	he Michaelis-Menton equation relation relation to which of the following (i) Substrate concentration (iii) Activation energy	g?	oncentration		
7	Regulators of enzymatic reaction (i) inhibitors (iii) activators	s are classified a (ii) converters (iv) both (i) ar	S		
8	The enzyme involved in feedback (i) Allosteric enzymes (iii) Apoenzymes	k inhibition are (ii) Holoenzym (iv) Coenzyme	es		
9	Trypsin is active in (i) Acidic (iii) Neutral	(ii) Alkaline (iv) None of the	nese		
10	The enzymes which produces the	ne enzymes which produces the peptide bond is known as			

(ii) peptidase

(iv) peptidyl transferase

carbonic unhydrase

(iii) carbohydrase

SECTION - B (25 Marks!

Answer **ALL** questions

ALL questions carry **EQUAL** Marks ($5 \times 5 = 25$)

11 a Bring out the properties and functions of metalloenzymes,

OR

- b Describe the structure and function of coenzyme NAD.
- 12 a Appraise the enzyme substrate complex formation with reference to free energy.

OR

- b Explain the molecular mechanism of covalent catalyst in detail.
- 13 a Summarize the significances of Arrhenius equation.

OR

- b Bring out the factors affects the enzyme activity.
- 14 a Compare the competitive and non competitive inhibition,

OR

- b Write notes on cooperativity and its types.
- 15 a Name any five enzymes and their applications in industries.

OR

b Write short notes on artificial enzymes.

SECTION -C (40 Marks)

Answer **ALL** questions

ALL questions carry **EQUAL** Marks ($5 \times 8 = 40$)

16 a Discuss in detail about the classification of enzymes in detail as per the enzyme commission system.

OR

- b Exemplify the structure of active site and add notes for lock and key hypothesis.
- 17 a Explain transition stat theory and role of energy in catalysis.

 $\cap R$

- b Narrate on the role and mechanism of serine protease and chymotrypsin.
- 18 a Derive Michaelis-Menton equation. State the importance of MM equation.

OF

- b Briefly describe on the methods of investigating the kinetics of enzyme catalysed reactions.
- 19 a Discuss the structural and functional properties of multi enzyme complexes.

OR

- b Explain on allosteric enzymes.
- 20 a Elucidate in brief about the different techniques of enzyme immobilization.

OR

b Elaborate on the enzymes used in clinical diagnosis.