PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Second Semester)

Branch - STATISTICS

NUMERICAL METHODS

11me:	Inree Hours	Maximum: 75 Marks
		A (10 Marks)
		LL questions
	ALL questions c	arry EQUAL marks $(10 \times 1 = 10)$
1	$\Delta(\text{Cons} \tan t) = 0$.	
	(i) 0	(ii) 1
	(iii) 2	(iv) ∞
2	The relationship between the operators Δ and E is .	
	(i) $E = 1 - \Delta$	(ii) $E = \Delta - 1$
	(iii) $E = 1 + \Delta$	(iv) $E = \Delta$
3	Which of the following is a central difference operator?	
	(i) Δ	(ii) μ
	(iii) δ	(iv) E
4	Gauss's formula (forward) is useful when	
	(i) 0 <n<∞< td=""><td>(ii) 0<n<1< td=""></n<1<></td></n<∞<>	(ii) 0 <n<1< td=""></n<1<>
	(iii) -1 <n<0< td=""><td>(iv) $\frac{-1}{2} < n < \frac{1}{2}$</td></n<0<>	(iv) $\frac{-1}{2} < n < \frac{1}{2}$
		2 2
5	In numerical differentiation, the r	counding error is proportional to h
	(i) directly	(ii) inversely
	(iii) equal	(iv) None
6	In simpson's $\frac{1}{3}$ rule the interval of integration must be divided into	
	number of sub intervals of width	h
	(i) an even	(ii) an odd
	(iii) minimum	(iv) Maximum
7	Which of the following is an algebraic equation?	
	(i) $x \log_{10} x - 1.2 = 0$	(ii) $x=\frac{1}{2}+\sin x$
	(iii) $x^3-3x+1=0$	(iv) $e^x = 4^x$
0		
8	Newton's – Raphson method is a (i) Secants	(ii) Cosecants
	(iii) Tangents	(iv) None
0		
9	To get more accurate result the ter (i) Increased	(ii) Decreased
	(iii) Constant	(iv) None
10	A Corrector formula is used to improve the value of	
10	(i) X_{n+1}	(ii) X_{n-1}
	$\begin{array}{c} \text{(iii)} \ \mathbf{y}^{n+1} \\ \end{array}$	$\begin{array}{ccc} (i) & x_{n-1} \\ (iv) & y_{n-1} \end{array}$

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

11 a Prove that $E \nabla = \nabla E = \Delta$.

OR

b Estimate the missing value from the following data

X: 1 2 Y : 9 3 81

12 a Derive Bessel's formula.

OR

b From the following table find y(35) by using stirling's formula.

X: 20 30 40 50 Y: 512 439 346 243

13 a Write a brief note on numerical differentiation.

- b Compute the value of the definite integral $\int \log_e x \, dx$ using simpson's $\frac{1}{3}$ rule.
- 14 a State the important properties of transcendental equations.

- b Using Newton's Raphson's method find the smallest positive root of the equation $x^3-2x+0.5=0$.
- 15 a Describe Euler's method.

OR

b Solve the equation y"+y=0 with the conditions y(0)=1 and y'(0)=0. Compute y(0.2) using Runge –kutta method.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 8 = 40)$

16 a State and prove fundamental theorem of finite differences.

b Find f(1) and f(5) using Newton's divided difference formula from the following data

X: 0 3 4 26 58 112 466 668 Y=f(x): 4

17 a Using Gauss's forward formula find f(3.75) from the following table.

2.5 3.0 4.0 4.5 X: 3.5 5.0 Y=f(x): 24.145 22.043 20.225 18.644 17.262 16.047

b Find the age corresponding to the annuity value 13.6 from the given table.

30 35 40 45 50 Age (x): Annuity Value (Y): 15.9 14.9 14.1 13.3 12.5 18 a Find first and second derivatives of the function tabulated below at the point X=1.5

X: 1.5 2.0 2.5 3.0 3.5 4.0 F(x): 3.375 7.0 13.625 24.0 38.875 59.0

OR

- b Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$, using Trapezoidal rule with h = 0.2. Hence determine the value of Π .
- 19 a State and prove the sufficient condition of iterations.

OR

- b Find the root of $x e^x = 3$ by Regula –Falsi method correct to three decimal places.
- 20 a Solve $\frac{dy}{dx} = y+e^x$, y(o)=o, for x=0.2, 0.4 by using Euler's method.

OR

b Given $\frac{dy}{dx} = 3x + \frac{y}{2}$ and y(0) =1. Find the values of y(0.1) and y(0.2) using Taylor's Series methods.

Z-Z-Z

END