PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Fifth Semester)

Branch-STATISTICS

CORE ELECTIVE -1: OPERATIONS RESEARCH -1

Time : Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 What is the scope of O.R?
- 2 State the mathematical formulation of LPP.
- 3 Define Stack Variables.
- 4 Define initial basic feasible solution of LPP.
- 5 What do you mean by duality in LPP?
- 6 State any two important results in duality.
- 7 Define feasible solution in transportation problem.
- 8 State the degeneracy in transportation problem.
- 9 Define unbalanced assignment problem with an example.
- 10 Define total elapsed time and idle time on machine with an example.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Discuss the characteristic of a good linear programming model.

OR

- b Old hens can be bought at Rs.2 each and young ones at Rs.5 each. The old hens lay 3 eggs per week and the young ones lay 5 eggs per week, each egg being worth 30 paise. A hen cost Rs.1 per week to feed. A person has only Rs.80 to spend for hens. How many of each kind should he buy to give a profit of more than Rs.6 per week, assuming that he cannot house more than 20 hens. Formulate this as LPP.
- 12 a Explain the canonical and standard forms of LPP with suitable illustrations.

OR

b Solve the following LPP by simplex method.

Maximize $z=4xi+10x_2$ subject to the constraints

```
2xi+x<sub>2</sub><50
2xi+5x<sub>2</sub><100
2xi+3x<sub>2</sub><90
and xi,x<sub>2</sub>>0
```

13 a Write down the dual of the following LPP.

Maximize $z=4x!+3x_2$

subject to the constraints

$$-x_r x_2 < -3$$

-**XI+x_2>-2**
 $x_b x_2 > 0$

OR

b Write the mathematical model of the dual simplex method.

Find the initial basic feasible solution for the following transporation problem by VAM.

	Dis	stributi			
	Di	D_2	D ₃	D_4	Availability
Si	11	13	17	14	250
\mathbf{s}_2	16	18	14	10	300
s ₃	21	24	13	10	400
Requirements	200	225	275	250	
OR					

Write the methods of finding initial basic feasible solution in transportation problem and explain the procedure of any one method.

Solve the following Assignment Problem.

			Job)	
	1	2	3	4	5
A Person ^ D E	"8 0 3 4 9	4 9 8 . 3 5	2 5 9 1 8	6 5 2 0 9 OR	f 4 6 3 5
	l			OK	

Explain the Johnson's procedure of solving a sequencing problem of 'n' jobs on '3' machines.

SECTION - C (30 MarksI

Answer any **THREE** Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$ Solve the LPP graphically Maximize $z=5x!+3x_2$ subject to $4xi+5x_2 < 1000$

andxi,x₂>0

Use Big-M method to solve Maximize $z=4x!+3x_2$ subject to

 $2xi+x_2>10$

-3xi+2x₂<6

XI+X2>6

and xi,x₂>0

Use dual Simplex method to solve the LPP. Maximize **z=-3xi-2x**₂

subject to

Xi+X₂>l

andxi,x₂>0

Describe the procedure of MODI 'method in transportation problem.

Find the sequence that minimizes the total elapsed time required to complete the following jobs on machines $M_{j_1}M_{2}$ and M_{3} in the order $M_{h_2}M_{2}$.

<u>the following jobs on indefines w_{1}, w_{2} and w_{3} in the order w_{h} w_{2}.</u>							
Task	A : B c	D^{-}	E	F	G	H I	
1U.	954	0	6	8	7	S A	