Maximum: 75 Marks

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Fourth Semester)

Branch - STATISTICS

STATISTICAL INFERENCE-I

Time : Three Hours

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- 1 Define Unbiasedness.
- 2 Define Point Estimation.
- 3 Explain sufficient statistic.
- 4 Define minimum variance unbiased estimators.
- 5 Give the names of various methods of estimation.
- Write any two properties of maximum likelihood estimations.
- 7 Define F-distribution.
- 8 Define Confidence interval.
- 9 Define Run-Tests.
- What are the types of Non-parametric tests?

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Show that $\left[\frac{\sum xi(\sum xi-1)}{n(n-1)}\right]$ is an unbiased estimate of θ^2 , for the sample $x_1, x_2, ..., x_n$ drawn on x which takes Re values 1 or 0 with respective probabilities θ and $(1-\theta)$.

OR

- b Discuss briefly on Efficient Estimators.
- 12 a Let x_1, x_2, \dots, x_n be a random sample from a uniform population on $[0, \theta]$. Find a sufficient estimator θ .

OR

- b State and explain the Fisher-Neyman Criterion.
- 13 a Explain the methods of minimum variance.

OR

- b If for a given population with p.d.f.f(x,θ)an MVB estimator T exists for θ , then likelihood equation will have a solution equal to the estimator T. Prove that the above statement and explain.
- 14 a Explain the properties of 't'-distribution.

OR

b A sample of size 25 yielded mean equal to 33and an estimated variance equal to 100. At the 1% level would you have reasons to doubt the claim that the population mean is not greater then 27?

Cont...

15 a Write the procedure of Sign. Test.

OR

b A dice is tossed 120 times with the following results.

5 Total 4 6 No. turned up: 2 3 1 18 10 22 15 120 Frequency: 30 25

Test the hypothesis that the dice is unbiased.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- If Tn is a consistent estimator of $\gamma(\theta)$ and $\Psi\{\gamma(\theta)\}$. Is a continuous function of $\gamma(\theta)$, then $\Psi(Tn)$ is a consistent estimator of $\psi\{\gamma(\theta)\}$.
- Let $x_1, x_2, ..., x_n$ be a random sample from a distribution with p.d.f $f(x,\theta) = e^{-(x-\theta)}, \quad \begin{array}{l} \theta < x < \infty \\ -\infty < \theta < \infty \end{array}$ obtain sufficient statistic force.
- Describe the properties of maximum likelihood estimators.
- The heights of 10 males of a given locality are found to be 70,67,62,68,61,68,70,64,64,66 inches. Is it reasonable to believe that the average height is greater than 64inches? Test at 5% level of significance level assuming that for q d.f p(t>1.83)=0.05.
- 20 Describe median test in detail.

Z-Z-Z

END