PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Second Semester)

Branch - PHYSICS

MECHANICS

Time:	Thre	e Hours			Maximum: 75 Marks
		SECTION Answer A			
			_	•	$(10 \times 1 = 10)$
1	Moment of inertia of a rectangular lamina about an axis passing through the center of lamina and parallel to one of its sides				
	(i)	Ml ² 12	(ii)	M ² 1 12	
	(iii)	M1 12	(iv)	$M(l^2 + b^2)$	
	The compound pendulum has the angular frequency				
	(0	cn=y j M g / l	(ii)	Md -V i	
	(iii)	1 Mgd ∖i	(iv)	$-V i$ $\infty = \frac{M}{I}$	
3	subn (i)	cate the correct answer the pr nerged submarine is called Underwater pressure Submerged pressure	(ii)	Liquid pressure	
4	(i)	cal's law is applicable to the le Compressible Solid in phase	(ii)	which is	····ive
5	whil (i)	ording to equation of continuate its cross sectional area Increases	(ii)	Decreases	its speed increases
6	The (i)	Remain same motion of a liquid in a tube is Bemoulis theorem Stoke's law	s desc (ii)	None of these ribed by Poiseuille's equ Archimede's pr	
7	(i)	engines works on cy Brayton Carnot		Dual Otto	
8	(i)	materials which are used to n Aluminium alloy Cromium alloy	(ii)		·
9	(i)	principle of virtual work is va Dynamic system of particles System in that applied forces			

(iii) Static system that has frictional forces(iv) Static system that has no frictional forrpc

The Lagrange's equation for conservative system

(i)
$$\frac{d | dL^{\wedge}|}{dt | Sqj} = 0$$
(ii)
$$\frac{d | dL^{\wedge}|}{dt | Sqj} = 0$$
(iii)
$$\frac{d}{dt | aqj} = 0$$
(iv)
$$\frac{5L dL}{sqj} = 0$$
Sqj

SECTION - B (35 Marks)

Answer **ALL** Questions

ALL Questions Carry **EQUAL** Marks ($5 \times 7 = 35$)

11 a Obtain the moment of inertia of circular lamina.

OR

- b Enumerate the conical pendulum.
- 12 a Outline the hydrostatic pressure due to a liquid coloumn.

OR

- b Explain the equilibrium of floating bodies.
- 13 a Differentiate streamline and turbulent flow.

OR

- b Deduce the torricelli's theorem.
- 14 a Write a short note on
 - (i) Effect of smaller cross-section of the jet
 - (ii) Conditions of a satellite to be launched.

OR

- b List out the applications of an artificial satellite.
- 15 a Discuss the conservation of energy.

OR

b Obtain the Lagrange's equation of Atwood machine.

SECTION - C (30 Marks)

Answer any **THREE** Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Explain the compound pendulum.
- Write a short note on (i) Thrust on an immersed plane (ii) Meta-centric height
- 18 Deduce the Bernoulli's theorem.
- Describe the followings (i) Shape of the rocket (ii) Weight and size of the rocket.
- 20 Obtain the Lagrangion equation of the motion.

Z-Z-Z

END