PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(First Semester)

Branch - MATHEMATICS

CLASSICAL ALGEBRA & TRIGONOMETRY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

1 Prove that the series $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$ is convergent.

- 2 State the Cauchy's condensation test.
- 3 State the Raabe's test.
- Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent for all values of x.
- Form a rational cubic equation which shall have for roots $1,3-\sqrt{-2}$.
- 6 Define reciprocal equation.
- 7 Find $\lim_{\theta \to 0} \frac{\tan \theta + \sec \theta 1}{\tan \theta \sec \theta + 1}$.
- 8 Prove that $\cosh^2 x + \sinh^2 x = \cosh 2x$.
- 9 Find Log(iy).
- 10 Find the sum of the series $\csc\theta + \csc2\theta + \csc2^{\theta} + ... + \csc2^{n-1}\theta$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks (5 x 5 = 25)

If $u_1+u_2+...$ is convergent and has the sum S, then prove that $ku_1+ku_2+...$ is convergent and has the sum kS.

OR

- b Find whether the series in which $u_n = (n^3 + 1)^{\frac{1}{3}} n$ is convergent or divergent.
- 12 a Examine the convergency of the series $\sum_{1}^{\infty} \left(\frac{n}{n+1}\right)^{1/2} x^n$.

OR

- b Examine the convergence the series $\sum \frac{(n+1)(n+2)...(n+n)}{n^n}$.
- 13 a Show that if a,b,c are real, the roots of $\frac{1}{x+a} + \frac{1}{x+b} + \frac{1}{x+c} = \frac{3}{x}$ are real.

b If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, find (i) $\sum \alpha^2$ (ii) $\sum \alpha^2 \beta^2$ and (iv) $\sum \alpha^3 \beta$.

14 a Express $\cos 8\theta$ in terms of $\sin \theta$.

OR

b Separate into real and imaginary parts tan⁻¹(x+iy).

Show that $\log_i i = \frac{4n+1}{4m+1}$, where m and n are integers.

Sum the series $\sin^3 \frac{\theta}{3} + 3\sin^3 \frac{\theta}{3^2} + 3^2\sin^3 \frac{\theta}{3^3} + ...$ to n terms.

SECTION - C (30 Marks)
Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- If $a_{n+2} = \sqrt{a_{n+1}a_n}$ and $a_n > 0$, show that the sequence $\{a_{2n-1}\}$ and $\{a_{2n}\}$ 16 are both monotonic, one increasing and the other decreasing and the sequence $\{a_n\}$ tends to $(a_1a_2^2)^{1/3}$.
- Test for convergency and divergency the series $1 + \frac{2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^3x^3}{4!} + \frac{5^4x^4}{5!} + \dots$ 17
- Solve the equation $6x^5-x^4-43x^3+43x^2+x-6=0$. 18
- Expand $\sin^3\theta \cos^5\theta$ in a series of multiples of θ . 19
- Find the sum to infinity of the series $\sin \alpha + c \sin(\alpha + \beta) + \frac{c^2}{2} \sin(\alpha + 2\beta) + ...$ 20 when |c| < 1.

Z-Z-Z

END