PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(First Semester)

Branch - MATHEMATICS

CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

1 If
$$x^3+y^3=3$$
 axy, find $\frac{dy}{dx}$.

- Find the maximum value for the function $\frac{\log x}{x}$. 2
- Write down the Cartesian formula for Radius of Curvature? 3
- Define Evolute.
- Show that $\int_{0}^{\pi} \cos^{3} x dx = 0$. 5
- Evaluate [xex dx. 6
- Evaluate $\int_{01}^{12} (x^2 + y^2) dxdy.$ Find $\int_{000}^{321} (x + y + z) dzdxdy.$ 7
- 8
- Prove that $\Gamma \frac{1}{2} = \sqrt{\pi}$ 9
- 10 What is the relation connecting Beta and Gamma functions?

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

Find the maxima and minima of the function $2x^3-3x^2-36x+10$. 11 a

- Find the minimum value of $x^2+y^2+z^2$ subject to the condition b $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.
- Find the centre of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$. 12 a

- Find the radius of curvature at (x,y) for the curve $a^2y=x^3-a^3$. b
- Evaluate $\int_{0}^{1} \frac{\log(1+x)}{(1+x^2)} dx$. 13 a

- Find the reduction formula for [sin n xdx. b
- Evaluate $\iiint (x-y+z) dx dy dz$ where R is given by $1 \le x \le 2$; $2 \le y \le 3$, 14 a $1 \le z \le 3$.

Evaluate $\iint (x^2 + y^2) dxdy$ over the area bounded by the curves y=4x, b

15 a Find
$$\int_{0}^{\pi/2} \sin^4 \theta \cos^6 \theta d\theta$$
.

OR

b Evaluate $\int_{0}^{1} \frac{1}{\sqrt{1+x^3}} dx.$

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Using Lagrange's method of multipliers, to find the minimum value of $x^2+y^2+z^2$ given that ax+by+cz=p.
- 17 Find the evolute of the curve $x^{2/3} + y^{2/3} = a^{2/3}$
- Derive the reduction formula for $\int x^m (\log x)^n dx$, m and n are positive integers and hence evaluate $\int x^3 (\log x)^2 dx$.
- Verify that $\iint_R (x^2 + y^2) dy dx = \iint_R (x^2 + y^2) dx dy$ where the region R is the triangle formed by the lines y=0, x=1 and y=x.
- Evaluate $\int_{0}^{1} x^{m} (\log \frac{1}{x})^{n} dx$ and hence find the value of $\int_{0}^{1} x^{4} (\log \frac{1}{x})^{3} dx$.

Z-Z-Z

END