PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Second Semester)

Branch - MATHEMATICS

ANALYTICAL GEOMETRY OF 3D AND VECTOR CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

1 Define Sphere.

- Find the equation o the sphere with centre (1,2,3) and radius 4.
- 3 Define Right circular cone.
- 4 Define guiding curve of a cylinder.
- Write the condition for the plane 1x+my+nz=p to touch the conicoid $ax^2+by^2+cz^2=1$.
- 6 Define Enveloping cylinder.
- 7 If \vec{r} is a constant magnitude vector find $\vec{r} \cdot \frac{d\vec{r}}{dt} & \vec{r} \cdot * \frac{d\vec{r}}{dt}$
- 8 Find the unit tangent vector on the curve $x=t^2+1$, y=4t-3, $z=2t^2-6t$ at t=2.
- 9 Define conservative functions.
- If $\vec{F} = 3xy\vec{i} y^2\vec{j}$, find $\int_c \vec{F} \cdot d\vec{r}$ where c is the curve on the xy plane $y=2x^2$ from (0,0) to (1,2).

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

Find the equation to the sphere through the four points (0,0,0). (a,0,0), (0,b,0) and (0,0,c).

OR

- b A sphere of constant radius 2k passes through the origin and meets the axes in A,B,C. Find the locus of the centroid of the tetrahedron OABC.
- Find the equations of the cone with vertex O and base curve the conic in which surface $ax^2+by^2+cz^2=1$ is cut by the plane $l_1x+m_1y+n_1z=p$.

OR

- b Find the equation of the tangent planes to the cone $9x^2-4y^2+16z^2=0$ which contain the line $\frac{x}{32} = \frac{y}{72} = \frac{z}{27}$.
- Find the equation of the cylinder whose generators are parallel to the z-axis and the guiding curve is $ax^2+by^2=cz$, lx+my+nz=p.

OR

- b Derive the condition for the plane 1x+my+nz=p to touch the conicoid $ax^2+by^2+cz^2=1$.
- 14 a Find the angle between the normal to the surface $xy-z^2=0$ at the points (1,4,-2) and (-3,-3,3).

OR

b If $\vec{F} = xy^2i + 2x^2yz\vec{j} - 3yz^2\vec{k}$ find div \vec{F} and curl \vec{F} at (1,-1,1).

14MAU05

Cont...

- Find the total work done in moving a particle in a force field given by $\vec{F} = 3xy\vec{i} 5z\vec{p} + 10x\vec{k}$ along $x=t^2+1$, $y=2t^2$ & $z=t^3$ from t=1 to t=2.
 - b Find the common area between $y^2=4x$ and $x^2=4y$ by using Green's theorem.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Find the equation of the sphere which passes into the circle $x^2+y^2+z^2-2x-4y=0$, x+2y+3z=8 and touches the plane 4x+3y=25.
- Find the condition for ax²+by²+cz²+2fyz+2gzx+2fxy=0 to represent a right circular cone. Obtain the equation of the axis and the vertical angle of the cone.
- Find the equation of the right circular cylinder described on the circle through the points (a,0,0), (0,a,0), (0,0,a) as a guiding curve.
- Find $\nabla x(\nabla x\vec{F})$ and hence deduce that $\nabla x\nabla x\nabla x(\nabla x\vec{F}) = \nabla^4\vec{F}$ if \vec{F} is solenoidal.
- Verify Gauss theorem for $\vec{F} = 4x\vec{i} 2y^2\vec{j} + z^2\vec{k}$ taken over the region bounded by $x^2+y^2=4$, z=0 and z=3.

 Z-Z-Z END