18MAU05

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Second Semester)

Branch - MATHMATICS

ANALYTICAL GEOMETRY

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

What is the directrix corresponding to the pole.

(i)
$$\frac{r}{1} = e\cos(\theta - \alpha)$$

(ii)
$$\frac{1}{r} = \cos(\theta - \alpha)$$

(iii)
$$\frac{1}{r} = e\cos(\alpha - \theta)$$

(i)
$$\frac{r}{1} = \cos(\theta - \alpha)$$
 (ii) $\frac{1}{r} = \cos(\theta - \alpha)$ (iii) $\frac{1}{r} = \cos(\theta - \alpha)$ (iv) $\frac{1}{r} = \cos(\theta - \alpha)$

What is the semi-latus rectum of $\frac{10}{\gamma} = 3\cos\theta + 4\sin\theta + 5$. 2

(i) 4

(iii) 5

(iv) 2

Find the condition that two given straight lines should be co-planar. 3

This the condition that two given straight lines should be co-planar.

(i)
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ 1 & m & n \\ l_1 & m_1 & n_1 \end{vmatrix} = 0$$
 (ii) $\begin{vmatrix} x_2 + x_1 & y_2 + y_1 & z_2 + z_1 \\ 1 & m & n \\ l_1 & m_1 & n_1 \end{vmatrix} = 0$

(iii) $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ 1 & m & n \\ l_1 & m_1 & n_1 \end{vmatrix} \neq 0$ (iv) $\begin{vmatrix} x_2 + x_1 & y_2 + y_1 & z_2 + z_1 \\ 1 & m & n \\ l_1 & m_1 & n_1 \end{vmatrix} \neq 0$

4 Which of the following lines are not intersected.

(i) Parallel

(ii) Skew

(iii) Coplanar

(iv) Perpendicular

5 Find the equation of the sphere with centre (-1,2,-3) and radius 3 units.

(i) $x^2+y^2+z^2-4x+8y-12z-10=0$ (ii) $x^2+y^2+z^2-2x+4y-6z-5=0$

(iii) $x^2+y^2+z^2+2x-4y+6z+5=0$ (iv) $x^2+y^2+z^2+4x-8y+12z+10=0$

6 What is the plane section of a sphere?

(i) Director circle

(ii) Small circle

(iii) Circle

(iv) Great circle

Identify the equation of the right circular cone with vertex O, axis Z – axis 7 and semi – vertical angle α is

(i) $x^2+y^2=\tan^2\alpha$

(ii) $x^2+y^2=z^2 \tan^2 \alpha$ (iv) $x^2+y^2=z^2 \tan^2 \alpha$

 $(iii)x^2+v^2=z^2\tan\alpha$

8 Identity the condition for the plane lx+my+nz=0 to touch the quadric cone $ax^2+by^2+cz^2+2fyz+2gzx+2hxy=0.$

(i)
$$\begin{vmatrix} a & h & g & 1 \\ h & b & f & m \\ g & f & c & n \\ 1 & m & n & o \end{vmatrix} = 0$$

(i)
$$\begin{vmatrix} a & h & g & 1 \\ h & b & f & m \\ g & f & c & n \\ 1 & m & n & o \end{vmatrix} = 0$$
 (ii) $\begin{vmatrix} a & h & g & 1 \\ h & b & f & m \\ 1 & m & n & o \\ g & f & c & n \end{vmatrix} = 0$

(iii)
$$\begin{vmatrix} a & h & g & 1 \\ g & f & c & n \\ h & b & f & m \\ 1 & m & n & o \end{vmatrix} = 0$$
 (iv) $\begin{vmatrix} h & b & f & m \\ a & h & g & 1 \\ g & f & c & n \\ 1 & m & n & o \end{vmatrix} = 0$

(iv)
$$\begin{vmatrix} h & b & f & m \\ a & h & g & 1 \\ g & f & c & n \\ 1 & m & n & o \end{vmatrix} = 0$$

- 9 Which is parallel to the generator of the cylinder?
 - (i) Axes

(ii) Directrix

(iii) line

- (iv) Latus rectum
- 10 A cylinder is a surface generated by a
 - (i) Tangent line
- (ii) Straight line

- (iii) Normal line
- (iv) Initial line

SECTION - B (35 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

State the condition that the line $\frac{1}{r} = A\cos\theta + B\sin\theta$ may be a tangent to 11 a the conic $\frac{1}{r} = 1 + e \cos \theta$.

- If the normal at the point P on a conic meets axis in G, then SG=e.sp.
- 12 a Show that the image of the point (1,-2,3) in the plane 2x-3y+2z+3=0 is (-3,4,-1).

OR

b Calculate the shortest distance between the lines

$$\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}; \frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}.$$

13 a Bring out the equation of the sphere through the four points and determining its radius (0,0,0),(9,0,0),(0,b,0),(0,0,C).

- Bring out the equn of the sphere which touches the sphere $x^2+y^2+z^2$ b 6x+2z+1=0 at the point (2,-2,1) and passes through the origin.
- State the equation of the cone with or origin which passes through the 14 a curve is $ax^2+by^2+cz^2=1$; $lx+my+nz=\rho$.

b Find the equation of the right circular cone whose vertex is at the origin, whose axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which has a semi vertical angle of 60^{0} .

Bring out the equation of the right circular cylinder of radius 3 with the axis $\frac{x+2}{3} = \frac{y-4}{6} = \frac{z-1}{2}$.

OR

b Out line about i) Cylinder ii) Right circular cylinder

iii) Enveloping cylinder.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 8 = 40)$

16 a Derive the tangents at the extremities of any focal chord of a conic intersect on the corresponding directrix.

OR

- b If a focal chord of an ellipse makes an angle α with the major axis, show that the angle between the tangents at its extremities is $\tan^{-1}(\frac{2e\sin\alpha}{e^2-1})$
- Show that the lines $\frac{x-3}{2} = \frac{y-2}{-5} = \frac{z-1}{3}$; $\frac{x-1}{-4} = \frac{y+2}{1} = \frac{z-6}{2}$ are coplanar and find the equation of the plane determined by them.

OR

- b Calculate the shortest distance between the lines $\frac{x-3}{-3} = \frac{y-8}{1} = \frac{z-3}{-1}; \frac{x+3}{3} = \frac{y+7}{-2} = \frac{z-6}{-4} \text{ and find the equn of the line of the S.D also.}$
- 18 a Enumerate the equation of the sphere through the points (2,3,+1), (5,-1,2), (4,3,-1) and (2,5,3).

OR

- b Bring out the equation of the sphere which passes through the circle $x^2+y^2+z^2-2x-4y = 0$ and x+2y+3z = 8 and touches the plane 4x+37=25.
- Show that the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the co-ordinate axis in (A,B,C). Prove that the equation of the cone generated by the lines drawn form O to meet the circle A, B, C is $yz(\frac{b}{c} + \frac{c}{b}) + zx(\frac{a}{c} + \frac{c}{a}) + xy(\frac{a}{b} + \frac{b}{a}) = 0$.

b Find the equation of the tangent plane of the cone $9x^2 - 4y^2 + 16z^2 = 0$ which contain the line $\frac{x}{32} = \frac{y}{f2} = \frac{z}{2f}$.

20 a Bring out the equation to the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and guiding curve $x^2 + 2y^2 = 1$, z = 3.

OR

b Discuss the equation of the right circular cylinder described on the circle passing through the points (a,0,0), (0,a,0), (0,0,a) as a guiding curve.