PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Fourth Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS – II

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

- 1 What do you understand by random sampling?
- 2 Write down the normal equations for Y=a+bx.
- What is meant by unbiased estimators?
- 4 Write down the characteristic of good estimators.
- 5 Mention any two names for the method of estimation.
- 6 Define the method of maximum likelihood.
- 7 What is meant by the statistical hypothesis?
- 8 Define power of a test.
- 9 Write down the assumptions of t-test.
- 10 Define Chi-square distribution.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Explain the method of selecting a simple random sampling.

OR

- b Derive the normal equations for fitting the following curves.
 - (i) $Y=ax^b$ and (ii) $Y=ab^x$.
- Sample variance is not an unbiased estimator of the population variance, but an asymptotically unbiased estimator of σ^2 .

OR

- b The sample mean is a consistent estimator of the population mean μ .
- 13 a Let $x_1,x_2,...,x_n$ denote random sample of size n from a uniform population with p.d.f.

$$f(x, \theta = 1; \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}, -\infty < \theta < \infty)$$
. Obtain the M.L.E. for θ .

OR

- b Write down the properties of M.L.E.
- 14 a Explain type I error and type II error.

OR

- b Write a short note on critical region.
- 15 a A correlation coefficient 0.7 is observed from a sample of 28 pairs of observation. Obtain the 95% confidence interval for ρ.

OR

b Write down the applications of chi-square test.

SECTION - C (30 Marks)

Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks (3 x 10 = 30)

Fit an exponential curve of the form y=ab^x to the following data.

X	1.1.	2	3	4	5	6	7	8
у.	1.0	1.2	1.8	2.5	3.6	. 4.7	6.6	9.1

- 17 State and prove Crammer Rao Inequality.
- In random sampling from normal population $N(\mu, \sigma^2)$, find the maximum likelihood estimators for
 - (i) μ when σ^2 is known,
 - (ii) σ^2 when μ is known, and
 - (iii) the simultaneous estimation of μ and σ^2 .
- Five coins are tossed 256 times. The number of heads observed is given below. Examine if the coins are unbiased, by employing chi 0 square goodness of fit.

No. of heads	0	1	2	3	4	5
Frequency	5	35	75	84	45	. 12

Two samples are drawn from two normal populations. From the following data test whether the population variances are the same at 5% level.

Sample I	60	65	71	74	76	82	85	87		
Sample II	61	66	67	85	78	63	85	86	88	91