PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Fifth Semester)

Branch - MATHEMATICS

ALGEBRA-I

Time: Three Hours

Maximum: 75 Marks

SECTION-A-(20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define Onto mapping.
- 2 State Fermat's theorem.
- 3 Define factor group.
- 4 Define Kernel of φ.
- 5 Define an automorphism.
- 6 Define transpiration on permutation group.
- 7 Define zero divisor.
- 8 Define skew field.
- 9 Define principal ideal.
- 10 Define greatest common divisor.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a If H is a non empty finite subset of a group G and H is closed under multiplication, then prove H is a subgroup of G.

OR

- b State and prove Euler's theorem.
- 12 a If H and K are finite subgroups of G of orders O(H) and O(K) respectively, then show $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.

OR

- b If ϕ is a homomorphism of g into \overline{G} with Kernel K, then prove K is a normal subgroup of G.
- 13 a Let S be a set and $\theta \in A(S)$. If $a,b \in S$, define $a=\theta^b$ if and only if $b=a\theta^i$ for some integer i. show that this defines an equivalence relation on S.

OR

- b Prove that every permutation is the product of its cycles.
- 14 a If p is a prime number then prove J_p, the ring of integers mod p, is a field.

UK

- b If R is a ring, then prove for all $a,b \in R$ (i) a0=0a=0 (ii) a(-b)=(-a)b=-(ab).
- 15 a Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then show that R is a field.

OR

b Let R be a Euclidean ring. If $a,b,c \in \mathbb{R}$, a|bc but (a,b)=1, then show that a|c.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks (3 x 10 = 30)

- Prove the relation a≡b mod H is an equivalence relation.
- 17 State and prove Cauchy's theorem for Abelian groups.
- 18 State and prove Cayley's theorem.
- 19 Show that a finite integral domain is a field.
- 20 Prove the field A=(a) is a maximal ideal of the P-111