PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2019

(First Semester)

Branch - COMPUTER SCIENCE

SOFT COMPUTING

Time:	Thre	e Hours			Maximum: 75 Marks	
		SECTION	-A H	O Marks)		
Answer ALL questions						
ALL questions carry EQUAL marks $(10 \times 1 = 10)$						
1	MIQ means .					
	(i) Machine intelligence quotient (ii) Machine information quotient					
	(iii) Machine intellectual quotient (iv) Machine imitation quotient					
2	The Human brain is a collection of more than 10 Billion interconnected					
	(i)	Dendrites	(ii)	Neurons		
	` /	Plasticity	` /	Synapses		
3	data.			_, meaning they	do not modify the	
		Active	` ′	Acyclic		
	(iii)	Passive	(iv)	Recurrent		
4	If a neuron receives an input from another neuron, and if both are highly active, the weight between the neurons should be strengthened by rule.					
		Kohonen's leaning Delta	` ′	Hop field law Hebb's		
5	solut (i)	In genetic Algorithms, the term typically refers to a candidate solution to a problem, often encoded as a bit string. (i) Chromosome (ii) Genome (iii) Diploid (iv) Mutation				
(, ,	-	` ′		1:	
6	sequ (i)	algorithm stops if there is no ence of consecutive generation Elapsed time Maximum generations	ons o	f length Stall generations		
7	(i)	zy logic based automatic train Denmark Hitachi	(ii)	ration control sys Japan United States	tem at	
8	A B = B A and $A B = B A$ is <u>'</u> laws.					
		Associative		Distributive		
	· /	Absorption	` /	Commutative		
9	abou	out the domain.				
	(i)	Intuition	(ii)	Inference		
	(iii)	Rank Ordering	(iv)	Genetic Algorit	hm	
					Cont	

defines the membership functions of the fuzzy sets used in the fuzzy rules.

(i) Decision-making

(ii) Database

(iii) Fuzzification

(iv) Defuzzification

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks ($5 \times 5 = 25$)

11 a Flow do artificial neuron nets model the brain? Discuss with diagram.

 $\cap R$

b Clarify with example neural networks differ from traditional computing systems.

12 a Elucidate in brief neural network architectures.

 $\cap \mathbb{R}$

b Translate in detail advantages and disadvantages of neural networks.

13 a Justify in brief the fundamentals of genetic algorithms.

OR

b Point out in detail encoding in genetic algorithms with example.

14 a Clear up various methods used in Crisp sets used in Fuzzy logic with examples.

OR

b Rephrase with examples various operations on Fuzzy sets.

15 a Illuminate different crisp relations with example.

OR

b Demonstrate various fuzzy relations with example.

SECTION -C (40 Marks)

Answer **ALL** questions

ALL questions carry EQUAL Marks ($5 \times 8 = 40$)

16 a Demonstrate with neat diagram modeling an artificial neuron.

OR

b Illustrate with example major components of an artificial neuron.

17 a Analyze in brief learning technologies in neural networks with diagram.

)R

b Explicate with examples application areas of neural networks.

18 a Paraphrase GA operators in genetic algorithm with example.

 \mathcal{R}

b Describe in detail advantages, limitations and applications of genetic algorithm.

19 a Show by examples various types of membership functions used in fuzzy logic.

OR

b Illuminate unique properties of fuzzy sets with examples.

20 a Enumerate fuzzy IF-THEN RULES with examples.

OR

b Elucidate with examples applications areas of Fuzzy logic.

Z-Z-Z

END