PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2019

(Second Semester)

Branch - COMPUTER SCIENCE

RESOURCE MANAGEMENT TECHNIQUES

Time	: Three Hours	Maxim	Maximum: 75 Marks	
SECTION-A (10 Marks! Answer ALL questions				
		carry EQUAL marks	(10 x 1 = 10)	
1				
	(i) three variables	(ii) two variables		
	(iii) four variables	(iv) none of these		
2	If the objective function z to be minimized then we convert into problem of maximizing by			
	(i) -Minimum (z)	(ii) Maximum (-z)		
	(iii) -Maximum (-z)	(iv) None of these		
3	is one of the sub-classes of linear programming problems.			
5	(i) assignment problem	(ii) transportation prob		
	(iii) inventory problem	(iv) none of these		
4	In MODI method, for each occupied cell in the current solution the system of equations solved is (i) $Uj+Vj-cy = 0$ (ii) $Ui+Vj < Cij$ (iii) $u_i = Cjj+Vj$ (iv) none of these			
5	stands for a number of c	,		
5	(i) queues (ii) arrival	(iii) server	(iv) none of these	
6	is ^a rule according to wh queue has formed. (i) service mechanism (iii) service channels	ich customers are selecto (ii) queue discipline (iv) none of these	ed for service who	
7	PERT networks are (i) event oriented (iii) event and activity oriented (i	(ii) activity orientedv) none of these		
8	Activity lies between (i) three events (ii) four events (iii) two events (iv) none of these			
9	The algebraic sum of gains and lo (i) two person game (iii) two person zero sum games ((ii) zero sum games	zero are called	
10	The posi tion in the pay off matrix where the minimum of row minima coincides with the minimum of the column maxima is called(i) maximum value(ii) saddle point(iii) optimum value(iv) none of these			
SECTION - B (25 Marks! Answer ALL questions				
ALL questions carry EQUAL Marks (5 x $5 = 25$)				

11a Explain graphical solution of LPP with an example.

OR

b Write a short note on Two-phase method.

12 a Explain North-West comer rule and least cost method.

OR

- b Explain assignment problem.
- 13 a Explain the input process and service mechanism in queuing model.

OR

- b Write a short note on queue discipline and capacity of the system.
- 14 a Explain simulation and its applications.

OR

- b Explain the generation of uniform (0,1) random observations.
- 15 a Discuss the two-person zero-sum games.

OR

b Describe Economic Order Quantity.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (
$$5 \times 8 = 40$$
)

16 a Solve the following LPP by using Simplex method Maximise z=xj+2x2+3x₃ subject to the constraints Xj+2x₂+3x₃<10

$$x, +x_2 < 5$$

$$x_b x_2, x_3 > 0$$

- b Use Big M method to minimize $z=2x|+x_2$ subject to the constraints 3x!+X2=3 $4xi+3x_2>6$ $Xt+2x_2^3$ $x_bx_2>0$
- 17 a Find optimum solution to the following transportation problem:

	Warehouse				
Plant	W!	$W_2 W$	3	W_4	Availability
F _t	7	4	3	5	235
F_2	6	8	7	4	280
F_{2}	5	6	9	10	110
Requirements	125	160	110	230	
OR					

b Solve the following assignment problem:

	А	ВC	D	
1	"10	25	15	20'
2	15	30	5	15
3	35	20	12	24
4	"10 15 35 17	25	24	20_

18 a Describe (M / M /1 : ∞ / FIFO) queuing model.

OR

b If for a period of 2 years in the day (8 to IO.am) trains arrive at the yard every 20 minutes but the sendee time continues to remain 36 minutes then calculate for this period:

i) the probability that the yard is empty.

ii) average number of trains in the system; on the assumption that the line capacity of the yard is limited to 4 trains only.

19 a Describe CPM and PERT	analysis
19 a Deserioe Crivi and I ERT	anary 515.

OR b The following table lists the jobs of a network along with their time estimates:

estimates.					
Job		Duration			
i	J	Optimistic	Most likely	Pessimistic	
i	2	3	6	15	
i	6	2	5	14	
2	3	6	12	30	
2	4	2	5	8	
3	5	5	11	17	
4	5	3	6	15	
6	7	3	9	27	
5	8	1	4	7	
7	8	4	19	28	

i) Draw the project network ii) Calculate the length and variance of the critical path.

iii) What is the approximate probability that the jobs on the critical path will be forty-one days?

20 a Solve the game whose pay off matrix is

PlayerB "-4 3' -7 1 Player A - 2 - 4 -5 -2 -1 -6_{-}

b Describe economic lot size with finite rate replenishment in inventory model.

Z-Z-Z

END