t'Sb LULLlAir. ur r\ru o tx. (AUTONOMOUS)

MCA DEGREE EXAMINATION MAY 2018 (Second Semester)

Branch - COMPUTER APPLICATIONS

MATHEMATICAL STRUCTURES

Time: Three Hours

2

SECTION -A (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

Maximum: 75 Marks

(7)

1 a In a group of 60 people, 27 like cold drinks and 42 like hot drinks and	
each person likes at least one of the two drinks. How many like both	
cold and hot?	(3)

b Let $A= (a, b, c)$, $B = (d, e)$, $c = \{a, d\}$ Find (i) AxB (ii) B x A	(I) (1)
(iii) Ax(BuC)	(2)
(iv) $(AnC)xB$	(2)
(v) (AnB) xC - (vi) A x (B - C)	(2). (2)
- (VI) A X (D - C)	(2)
c Find the domain of the function $y = Vx-2$.	(2)
OR	
d If $f(x) = x = 3$, $0 < x < 4$, find its range.	(3)
e Let $f(x) = x + 2$ and $g(x) = 2x$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.	(5)
f Define the following :	
i) Union of two sets	(1)
ii) Intersection of two sets	$(1)^{(1)}$
iii) Complement of a set	(1)
iv) Difference of two sets	(2)
v) Symbolic difference of two sets	(2)
a Solve the following system of linear equations using the method of Gaussian elimination : $xi + 2x_2 + 3x_3 + 2x_4 = -1$ $-Xi - 2x_2 - 2x_3 + X4 = 2$	
$2xi + 4x_2^2 + 8x_3 + 12x_4 = 4$	(8)
b Use the Jacobi method to approximate the solution of the following	
system of linear equations :	
$5x_1 - 2x_2 + 3x_3 = -1$	
$-3x_1 + 9x_2 + x_3 = 2$	
$2xi - x_2 - 7x_3 = 3$ Continue the iterations until two successive approximations are	
Commute the netations until two successive approximations are	

Continue the iterations until two successive approximations are identical when rounded to three significance digits. (

c Which of the following systems of linear equations has a strictly diagonally dominant coefficient matrix?

(i)
$$3xi - x_2 = -4$$
; $2xi + 5x_2 = 2$
(ii) $4xi + 2x_2 - x_3 = -1$ (3)

$$X_{J} + 2X_{3} = -4$$

$$3x_{j} - 5x_{2} + x_{3} = 3$$
(4)

d Solve $2x^3 - 2.5x - 5 = 0$ for the root in the interval [1,2] by regual falsi method. (8)

3	a Find the starting solution in the following transportation problem by
	YAM. Also obtain the optimum solution.

	Di	D ₂	D ₃	D ₄	Supply
S,	3	7	6	4	5 '
S,	2	4	3	2	2
s,	4.	3	8	5	3
Demand	3	3	2	2	
	•	(OR	•	

b Solve the following assignment problems :

E	F	G	H					
Af'18	26	17	11					
B 13	28	14	26				((\mathbf{a}
C 38	19	18	15				()	1)
D! 19	26	24	10					
1	0	3						
I (9	26	15>						
II 13	27	6						6
in 35	20	15					(0	5)
IV\18	30	20						
· · ·	60	· · · ·	.1 .1	C 11	•	1		

4 a A project consists of 8 activities with the following relevant

information								
Activity	Immediate	Estimated duration (days)						
	Predecessor	Optimistic	Pessimistic					
А	-	i S i		7				
В	-	1 ! 4		n /				
С	-	2 2		8				
D	А	11'		1				
Е	В	2 (5		14				
F	С	2	5	8				
G	D, E	3	6	15				
Н	F, G	1	2	3				

i) Draw the PERT network & find the expected project completion time.

- ii) What duration will have 95% confidence for project completion?
- iii) If the average duration for activity F increases to 14 days, what will its effect on the expected project completion time which will have 95% confidence?

OR

b Draw the network for the data given below & compete

(i) Critical path (ii) Early start & late start times for each activity (iii) Total slack for each activity

Ì	Activity :	A	В	С	D	Е	F	G	Η	Ι
	Predecessor :	-	-	-	А	В	С	D, E	В	H, F
	Estimated time (weeks) :	3	5	4	2	3	9	8	7	9

5 a Suppose L(G) $ja^mb^n/m > 0, n > Oj$. Find the grammar G producing L(G).

(5)

b What is the classification of grammar introduced by Chomsky? (10)

OR

c Explain Automaton, Deterministic finite automaton, Non deterministic finite automaton.

END