Scam Date & Time: 29-Sep-2020 (02:00 PM - 05:45 PM)

14MAP16

PSG COLLEGE OF ARTS AND SCIENCE

Note: Writing 3hrs: Checking & Inserting Image : 30mins

MSc DEGREE EXAMINATION MAY 2020 (Fourth Semester)

Branch - MATHEMATICS

FLUID DYNAMICS [18MAP16]

Marks: 75

Duration: 210 mins.

SECTION A

Answer all the questions.

1)	The thermal conductivity in fourier heat condu	action law is			
			(1		
	(i) $\frac{J}{Ms \deg K}$ (ii) $\frac{1}{Mj \deg K}$ (iii)	deg K (IV) deg K	(1		
2)	The equation of streamline is		-		
	(i) $qxd\tau=1$ (ii) $qxd\tau=-1$ (iii) $qxd\tau=-1$	qxdt=0 (iv) qxdt=c	(1		
		4x01-0 (1V) 4x01-0	(1		
)	is expressed in terms of the observe in	angle between two linear			
	is expressed in terms of the change in angle between two linear elements from the unstrained state to the strained state.				
	(i) strain (ii) normal strain (iii) direct		in (1		
)	In compressible fluid, the equation of continuit	iv is	and a second		
	(i) $\frac{D\rho}{Dt} + \nabla \cdot q = 0$ (ii) $\frac{D\rho}{Dt} + \rho$		(1		
	(iii) $\frac{D\rho}{Dr} - \nabla q = 0$ (iv) $\frac{D\rho}{Dr} - \rho'$	$\nabla a = 0$			
	$(III) = \frac{1}{Dt} + (III) = 0$ $(III) = \frac{1}{Dt} = 0$	· · · · ·			
)	The necessary condition of a velocity potential in a fluid of irrotantional				
	motion is		(1		
	(i) $\nabla .q=0$ (ii) $\nabla .q=1$ (iii) ∇	$\nabla xq=1$ (iv) $\nabla xq=0$			
)	A sink is represented algebraically as of	f source.			
	(i) positive (ii) negative (iii) both (i) and		i) (1		
			-		
A State					
	Reynolds number of flow is				
	(i) $\frac{q \alpha l}{\gamma}$ (ii) $\frac{q \alpha}{\gamma}$ (iii)	$\frac{dx}{1}$ (iv) dx 1	(1		
1	and the second				

https://examcloud.in/epn/reports/exam-qpaper.php

9)	Vorticity transport equation states as	
	(i) $\frac{D\Omega}{Dt} - (\Omega \nabla)q = 0$ (ii) $\frac{D\Omega}{Dt} - (\Omega \nabla)q = \gamma \nabla^2 \Omega$	
	Dt	(1)
the standard	(iii) $\frac{D\Omega}{Dt} - (\Omega \nabla)q = \gamma$ (iv) $\frac{D\Omega}{Dt} + (\Omega \nabla)q = \gamma \nabla^2 \Omega$	
10)	In momentum integral equation, method is that the solutions satisfy	
	the differential equations only on the average	/15
	(i) Von Karman method (ii) Howarth method (iii) Ni Kuradse method (iv) Prandth method	(1)
•	SECTION B	
Answer all	the questions.	
11)	State the fluid properties of themsel and dustinity	
	State the fluid properties of thermal conductivity.	(5)
a)		
[OR]		
b)	Determine the equation of the streamlines if the velocity vector q is given by	
	q=ix-jy.	(5)
12)		
	. Verify the equality of shearing stresses $\sigma_{vz} = \sigma_{zv}$, $\sigma_{xz} = \sigma_{zx}$ and $\sigma_{xv} = \sigma_{vx}$.	15
		(5)
a)		
[OR] b)	Is the equation of continuity satisfied in the following incompressible steady	
	flow field velocities as $u(x, y) = \frac{K(x^2 - y^2)}{(x^2 + y^2)^2}$, $v(x, y) = \frac{2Kxy}{(x^2 + y^2)^2}$.	
	$(x^2 + y^2)^2$, $(x^2 + y^2)^2$.	
13)	State and prove Kelvin's theorem of circulation.	1
		(5)
a)		
[OR]	Show that the velocity potential $Q = \frac{a}{2}(x^2 + y^2 - 2z^2)$ satisfies the Laplace	
b)	equation and represent the flow against a fixed plane wall.	(5)
	equation and represent the now against a fixed plane wall.	
14)		
	Express the significant role of Reynolds number in similarity of flows.	(5)
		(5)
a)		
[OR] b)	Determine the maximum value of the velocity profile in the annular space between two coaxial cylinders.	
	i i i i i i i i i i i i i i i i i i i	(5)
S. S. Salar		

14MAP16

is the flow between two parallel plates are both stationery. (i) coquette flow (ii) plane poiseville flow (iii) Hagen poiseville flow (iv) both (i) and (ii)

https://examcloud.in/epn/reports/exam-qpaper.php

11/28/2020

8)

9)

2/3

(1)

11/28/2020	14MAP16 Calculate average skin friction of shearing stress.	(5)
a)		
[OR] b)	Derive Van Karman Integral relation of boundary layer.	(5)
	SECTION C	
	the questions.	
16)	Solve vorticity in polar coordinates: Also determine the equation of vortex lines if the velocity vector in the fluid field $q=i(az-By)+j(Bx-Cz)+K(Cy-Ax)$.	(8)
a) [*]		
[OR] b)	Calculate material derivative and acceleration of a fluid particle in Cartesian, cylindrical and spherical coordinates.	(8)
17)	Calculate the rate of strains in fluid dynamics.	
		(8)
.a)		
[OR] b)	Derive energy equation.	(8)
18)	Derive momentum theorem.	
		(8)
a) -		
[OR] b)	Derive Laplace's equation in spherical coordinates.	(8)
19)	Calculate (i) maximum and average velocity	
	(ii) shearing stress of plane poiseuille flow.	(8)
a)		
[OR] b)	Find the rate of flow between two concentric rotating cylinders.	(8)
20)	Derive Blasius solution.	(8)
a)		
[OR] b)	Solve boundary layer equation on a surface with pressure gradient.	(8)

-----End-----

https://examcloud.in/epn/reports/exam-gpaper.php

3/3

d