Lxam Date & Time: 28-Sep-2020 (02:00 PM - 05:45 PM)



18MAP15

# **PSG COLLEGE OF ARTS AND SCIENCE**

Note: Writing 3hrs: Checking & Inserting Image : 30mins

MSc DEGREE EXAMINATION MAY 2020 (Fourth Semester)

**Branch - MATHEMATICS** 

## **CONTROL THEORY [18MAP15]**

## Marks: 75

Duration: 210 mins.

1/4

#### **SECTION - A**

## Answer all the questions.

| 1) | The fixed points of the operator $px=x^2$ are                                                                                                                                                                                                |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (i) 0,1 (ii) 1,2 (iii) 0,2. (iv) 1,3                                                                                                                                                                                                         | (1) |
| 2) | The nxr matrix function R(t) defined on [O,T] is a reconstruction Kernel if and only if = I (nxn identity matrix).                                                                                                                           |     |
|    | (i) $\int_{0}^{T} R(t)H(t)dt$ (ii) $\int_{0}^{T} R(t)X(t_{10})dt$                                                                                                                                                                            | (1) |
|    | (iii) $\int_{0}^{T} R(t)H(t) \Delta x(t_{10}) dt$ (iv) None                                                                                                                                                                                  |     |
| 3) | The controllability Grammian matrix is $M(0,T)=$                                                                                                                                                                                             |     |
|    | (i) $\int_{0}^{T} X(T,t)B(t)dt$ (ii) $\int_{0}^{1} X(T,t)B(t)B^{*}(t)X^{*}(T,t)dtdt$                                                                                                                                                         | (1) |
|    | (iii) $\int_{0}^{T} X^{*}(T,t)B^{*}(t)dt$ (iv) $\int_{0}^{T} X^{*}(T,t)B(t)dt$                                                                                                                                                               |     |
| 1  |                                                                                                                                                                                                                                              |     |
| 4) | Ifthen the system $x = Ax + Bu$ is controllable.<br>(i) rank B=n (ii) rank B <n (iii)="" b="" rank="">n (iv) rank B=0</n>                                                                                                                    | (1) |
| 5) | The system x = Ax is stable if all the eigenvalues of A have real parts.<br>(i) positive (ii) negative (iii) no (iv) none                                                                                                                    | (1) |
| 6) | Let X(t) be a fundamental matrix of $x = A(t)x(t)$ . Then the system is<br>if and only if there exists a constant $k>0$ with $  x(t)   \le k$ , $t \in J$ .<br>(i) Stable (ii) Unstable<br>(iii) Uniformly stable (iv) Asymptotically Stable | (1) |

https://examcloud.in/epn/reports/exam-gpaper.php

| 11/28/2020 | 18MAP15                                                                                                                                              |       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7)         | The pair (H,A) is detectable if and only if the pair is stabilizable.<br>(i) $(A^*, H^*)$ (ii) $(-A^*, H^*)$ (iii) $(A^*, -H^*)$ (iv) $(-A^*, -H^*)$ | (1)   |
| 8)         | The control problem $x(0)=x_0$ , $x(T)=x_1$ for the system $x = Ax + Bu$ , $x \in \mathbb{R}^n$ ,<br>$u \in \mathbb{R}^m$ is solvable if and only if |       |
|            |                                                                                                                                                      | (1)   |
| 9)         | The matrix differential equation $\overset{\circ}{K}(t) + K(t)A(t) + A^{*}(t)k(t) - K(t)S(t)K(t) + Q(t) = 0$<br>is calledequation.                   | (1).  |
|            | (i) Euler's (ii) Ricatti (iii) Poisson (iv) Lagrange's                                                                                               |       |
| 10)        | If u(t)=-R-1(t)B*(t)K(t)x(t), then T attains a(i) local minimum(ii) local maximum(iii) zero(iv) none                                                 | (1) · |

#### **SECTION - B**

# Answer all the questions.

11)

a)

Prove that the observed linear system x(t) = A(t)x(t) and y(t)=H(t)x(t) is observable on [0,T] if and only if the observability Grammian matrix.

 $W(0,T) = \int_{0}^{\infty} X^{*}(t,0)H^{*}(t)H(t)X(t,0)dt \text{ is positive definite, where the star}$ (5) denotes the matrix transpose.

[OR] b)

| Check | the | system                                       | $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}$       | and | y=Hx | is | observable o | r not, | where |   |
|-------|-----|----------------------------------------------|----------------------------------------------------|-----|------|----|--------------|--------|-------|---|
|       |     | $\begin{bmatrix} 1\\1\\-2 \end{bmatrix}$ and | $\mathbf{H} = \begin{bmatrix} 0 & 0 \end{bmatrix}$ | 1]  |      |    |              | ·      |       | ( |

12) Show that the dynamical system described by  $\hat{x}_1 = x_1 + x_2$  and  $\hat{x}_2 = -2x_1 + x_2 + u$  is controllable.
(5) a)

> Prove that the system x(t) = A(t)x(t) + B(t)u(t) is controllable on [0,T] if and only if for each vector  $x_1 \in \mathbb{R}^n$  there is a control  $u \in L^2_{\pi}[0,T]$  which steers 0 to  $x_1$  during [0,T]. (5)

13)

State and prove Gronwall's inequality.

a) [OR] b)

[OR]

b)

(5)

(5)

(5)

11/28/2020

#### 18MAP15

29

(5)

(5)

(5)

(8)

(8)

(8)

3/4

Consider the differential equations  $\frac{dx_1}{dt} = x_2 - x_1(x_1^2 + x_2^2)$  and  $\frac{dx_2}{dt} = -x_1 - x_1(x_1^2 + x_2^2)$ . Show that the solution of the above system is asymptotically stable.

14)

Prove that the pair (A+BK, B) is controllable if and only if the pair (A,B) is controllable.

<sup>\*</sup> [OR] b)

a)

15)

a)

Prove that C(A,B) is the invariant subspace of the matrix A.

If x(t) and p(t) are the solutions of the canonical equations  $\begin{bmatrix} \circ \\ x(t) \\ \circ \\ p(t) \end{bmatrix} = \begin{bmatrix} A(t) & -s(t) \\ -Q(t) & -A^*(t) \end{bmatrix} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix}$ and if p(t) = K(t)x(t) for all  $t \in [0,T]$  and all x(t), then prove that K(t) must satisfy the equation  $\mathring{K}(t)A(t) + A^*(t)K(t) - K(t)S(t)K(t) + Q(t) = 0$ , where  $S(t) = B(t) R^{-1}(t) B^*(t)$ .

[OR] b)

If K(t) is the solution of the Ricatti equation  $\overset{\circ}{K}(t) + K(t)A(t) + A^{*}(t)K(t) - K(t)S(t)K(t) + Q(t) = 0$  and if K(T)=F, then K(t) (5) is symmetric for all  $t \in [0,T]$ , that is,  $K(t)=K^{*}(t)$ .

#### **SECTION - C**

Answer all the questions.

Let A be a nxn matrix that is continuous on a closed bounded interval J and let  $f \in L^2_{\pi}(J)$ . Given  $t_0 \in J$  and  $x_0 \in \mathbb{R}^n$ . Prove that there exists a unique a) solution x(t) of  $\dot{x}(t) = A(t)x(t) + f(t)$  on the interval J with  $x(t_0) = x_0$ .

[OR]

b)

16)

Prove that the constant coefficient system x = Ax and y=Hx is observable on an arbitrary interval [0,T] is and only if for some k,  $0 < k \le n$ , the rank of he

Η

observability matrix rank |HA| = n. $|HA^{K-1}|$ 

17)

Determine the control function for the controlled harmonic oscillator  $\ddot{x} + x = u$  which steers from  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$  to  $\begin{pmatrix} \frac{12}{12} \\ \frac{12}{12} \end{pmatrix}$ .

[OR] b)<sup>·</sup>

a)

Assume that the continuous function f satisfies the condition (8)  $\lim_{(t,u)\to\infty} \frac{|f(t,x,u)|}{|(x,u)|} = 0 \quad \text{uniformly for } t \in I. \quad \text{If } x(t) = A(t)x(t) + B(t)u(t) \text{ is } x(t) = A(t)x(t) + B(t)u(t) + B$ 

https://examcloud.in/epn/reports/exam-gpaper.php

| 8/2020     | 18MAP15                                                                                                                                                                                                                    |     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | Let $x(t,s)$ be the fundamental matrix of $x(t) = A(t)x(t)$ . Prove that this system is uniformly stable if and only if there exist a constant $k>0$ such that                                                             | (8) |
| a)         | $\ \mathbf{x}(t,s)\  \leq k, 0 \leq s \leq t < \infty.$                                                                                                                                                                    |     |
| [OR]<br>b) | If all the characteristic roots of A have negative real parts and B(t) satisfies $\lim_{t \to \infty}    B(t)    = 0$ , then prove that all the solutions of the system                                                    | (8) |
| The state  | $\dot{x}(t) = A(t)x(t) + B(t)x(t)$ tends to zero as $t \rightarrow \infty$ .                                                                                                                                               |     |
| 19)<br>a)  | Suppose there are mxn matrices $k_1$ and $k_2$ such that $(A+BK_1)$ and $-(A+BK_2)$ are stability matrices. Then prove that the system $x = Ax + Bu$ is controllable.                                                      | (8) |
| [OR]<br>b) | Prove that the control problem $x(0)=x_0$ , $x(T)=x_1$ for the system $x = Ax + Bu$ is solvable if and only if $x_1-e^{AT}x_0 \in C(A,B)$ .                                                                                | (8) |
| 20)        | Consider the controllable system $\dot{x}_1(t) = x_2(t)$ and $\dot{x}_2(t) = u(t)$ with the cost                                                                                                                           |     |
| a)         | functional J = $\frac{1}{2} \int_{0}^{\infty} \left[ x_1^2(t) + 2bx_1(t)x_2(t) + ax_2^2(t) + u^2(t) \right] dt$ , where we assume                                                                                          | (8) |
|            | that $a-b^2 > 0$ . Find the optimal control.                                                                                                                                                                               |     |
| [OŔ]<br>b) | For the continuous nonlinear system $\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t,x(t))$ with<br>quadratic performance criteria $J = \frac{1}{2}x^{*}(T)Fx(t) + \frac{1}{2}\int_{0}^{T} [x^{*}(t)Q(t)x(t) + u^{*}(t)R(t)u(t)]dt$ |     |
|            | Prove that the optimal control exists if $  f(t,x)-f(t,y)   \le a   x-y  $ where 'a' is a positive                                                                                                                         |     |

Prove that the optimal control exists if  $\|f(t,x)-f(t,y)\| \le a \|x-y\|$  where 'a' is a positive (8) constant and is given by  $u(x(t),t) = -R^{-1}(t)B^{*}(t)K(t)X(t)-R^{-1}(t)B^{*}(t)h(t,x)$  where K(t) satisfies the Ricatti equation  $\dot{K}(t) + K(t)A(t) + A^{*}(t)K(t) - K(t)S(t)K(t) + Q(t) = 0$  and  $\dot{h}(t,x) = -[A^{*}(t) - K(t)B(t)R^{-1}(t)B^{*}(t)]h(t,x)-K(t)f(t,x(t))], h(T,x)=0,$ 

----End-----

11/28

4/4