TOTAL PAGES: 2 18CAU02

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BCA DEGREE EXAMINATION DECEMBER 2019

(First Semester)

Branch - COMPUTER APPLICATIONS

COMPUTER SYSTEM ARCHITECTURE

	COMICIENSISI	EMINETHIECTURE	
Time: Three Hours		Maximum: 75 Marks	
	Answer A	I-A (10 Marks) ALL questions carry EQUAL marks	$(10 \times 1 = 10)$
(i)	nmbers are represented in digit Binary operation i) Binary code	al computer through aJ (ii) Arithmeticoperation (iv) Digital operation	·
	ne basic logic gate whose outpu OR gate i) INVERTER gate		nput is the
(i)	olean algebra does not have_ Boolean i) Complement	inverses. (ii) Additive (iv) Universe	
(i)	tal number of Min terms in Th 4 i) 8	ree variable map is (ii) 3 (iv) 5	
Co	Complements are used in digital computers for simplifying operation.		
` ,		(ii) addition(iv) division	
	A half adder circuits need two binary inputs and binary outputs.		binary
` '	one i) three	(ii) two (iv) four	
(i)		of sequential circuit, (ii) one (iv) three	
(i)	n n-bit register has a group of n i) n-1	flip flop. (ii) n+1 (iv) n+2	
(i)	atus bit conditions are sometime zero bits i) binary bits	nes called as (ii) flag bits (iv) both (i) & (ii)	
(i)	immediate addressing mode address i) data	is given in instruction (ii) code (iv) op code	itself.

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (5x5=25)

11 a Explain Gray code with example.

OR

- b. Discuss the NAND operation.
- 12 a Explain the functions of Encoder.

OR

- b Write note on Don't care condition.
- 13 a Explain RS flip flop with truth table.

OR

- b Describe Binary addition with example.
- 14 a Write notes on synchronous counters.

 $\cap R$

- b Describe the function of Ring counter.
- 15 a Explain -Instription formats.

OR

b Write notes on 1-0 processor.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (5x8 = 40)

16 a Explain OR gate with truth table.

OR

- b Discuss about moving and storing information.
- 17 a Explain sum of product with suitable example.

 $\cap \mathbf{p}$

- b Describe the function of De Multiplexers with truth table.
- 18 a Discuss the Edge Triggered R S flip flop.

OR

- b Illustrate the Binary Subtraction with example.
- 19 a Describe the function of 54/74198 shift register with logic diagram.

OR

- b Build logic diagram and describe the function of MOD3 counter.
- 20 a Discuss about the Stack Organization with diagram.

 $\cap R$

b Briefly Explain Asynchronous Data transfer.

Z-Z-Z

END