(iv) Non-singular

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2019

(Second Semester)

Branch - CHEMISTRY

MATHEMATICS – II

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 1 = 10)$ If the characteristic equations of matrices A & B are same then they are Matrices.

- (ii) Similar (iii) Equal The equation $Ax = \lambda x$ is called of the matrix A.
- (i) Characteristic equation (ii) Characteristic value
- (iii) Characteristic polynomial (iv) Polynomial equation
- The partial differential equation of Z = (x+a)(y+b), after eliminating a and b is. 3
 - (i) Z = p+q (ii) Z = p/q(iii) Z = p-q (iv) Z = pqSolve: $\frac{\partial^2 z}{\partial x^2} = \sin y$. Solution is Z=.
 - (i) Sin y (ii) $-\sin y$ (iii) $-\sin y + y + \phi(x)$ (iv) $-\sin y + yf(x) + \phi(x)$
- $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \text{ if } f(x) \text{ is }.$ 5

(i) Singular

2

4

- $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \text{ if } f(x) \text{ is .}$ (i) Odd (ii) f(-x)=-f(x) (iii) Even (iv) Rational
- $\int \sin mx \sin nk = 0$ if ____, where m and n are integers.

- (i) m=n (ii) $m \neq n$ (iii) m=n=1 (iv) m-n=0
- 7
- $L(e^{-at}) = .$ (i) $\frac{1}{s-a}$ (ii) $\frac{s}{s-a}$ (iii) $\frac{s}{s+a}$ (iv) $\frac{1}{s+a}$

- Find $L(t^3-3t^2+2)$. 8
 - (i) 0 (ii) $\frac{6}{s^4} \frac{2}{s^3} + 6$ (iii) $\frac{6}{s^4} \frac{6}{s^3} + \frac{2}{s}$ (iv) $\frac{2}{s^4} + \frac{2}{s^2} + \frac{3}{s}$

- 9 is a self – correcting method.
 - (i) Direct (ii) Indirect (iii) Elimination
- (iv) Facterozation

(iv) Approximation

- Fer some systems is the only course available. 10
 - (i) Iterative (ii) Indirect (iii) Elimination
 - SECTION B (25 Marks)

Answer ALL questions **ALL** questions carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.

b Calculate A^4 when $A = \begin{bmatrix} -1 & 3 \\ -1 & 4 \end{bmatrix}$.

12 Cont...

b Solve
$$\frac{\partial^2 z}{\partial x^2} = a^2 z$$
, given that when $x = 0$, $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$.

13 a Find the fourier sine series for $\pi x-x^2$ in $(0, \pi)$.

OR

b If
$$f(x) = \begin{cases} -\sin -\pi < x < 0 \\ \sin 0 < x < \pi \end{cases}$$
, expand $f(x)$ as a fourier series in $[-\pi, \pi]$.

14 a Find L⁻¹
$$\left[\frac{s^2}{(s-1)^3}\right]$$

b Find L⁻¹
$$\left[\frac{1}{(s+1)(s^2+2s+2)} \right]$$
.

Solve the system of equations x+y+z+w=z, 2x-y+2z-w=-5, 3x+2y+3z+4w=7 and x-2y-3z+2w=5 by Gauss – Jordan method.

OR

OR

b Solve: 3x+4y+5z=18, 2x-y+8z=13, and 5x-2y+7z=20 by Gauss – Elimination Method.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 8 = 40)$

16 a If
$$A = \begin{pmatrix} 7 & 3 \\ 2 & 6 \end{pmatrix}$$
 find A^n interns of A.

OR

- b Verify Cayley Hamilton Theorem for $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$ and hence find its Inverse.
- 17 a Find the general solution of $x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2)$.

 OR
 - b Find the general solution of x(y-z)p+y(z-x)q=z(x-y).
- 18 a Find the Fourier Series of $f(x) = x(2\pi x)$ in $(0, 2\pi)$ using this obtain the sum of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

OR

- b Find the Fourier Series of $f(x) = x^2$ in $(-\pi, \pi)$. Using this obtain the sum of $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \dots$
- 19 a Solve $\frac{dy}{dt} + y = 2 + 3t + t^2$ when y(o)=1.

OR

- b Solve y"+y= sint given y(0)=1, y'(0)= $\frac{1}{2}$.
- 20 a Solve the following systems of equations by Gauss Jacobi method: (Correct to 3 decimal places). 8x-3y+2z=20,4x+11y-z=33,6x+3y+12z=35.

OR