Exam Date & Time: 30-Sep-2020 (10:00 AM - 01:45 PM)

tps://examcloud.in/epn/reports/exam-qpaper.php

PSG COLLEGE OF ARTS AND SCIENCE

Note: Writing 3hrs: Checking & Inserting Image: 30mins + Grace Time: 15mins

BSc DEGREE EXAMINATION MAY 2020 (Sixth Semester)

Branch - MATHEMATICS GRAPH THEORY [14MAU22]

Marks: 75 Duration: 225 mins. SECTION A Answer all the questions. 1) Define connected graph. (2)2) Define null graph and pendent vertex. (2)Prove that if in a graph G there is one and only one path between every pair of vertices, 3) (2) G is tree. What do you mean by rooted tree? 4) (2) Write any two properties common to the two graphs of Kuratowski. (2) Define embedding. (2) Write the properties of a sub matrix. 7) (2)Define adjacency matrices. (2) What do you mean by balanced graph? 9) (2) Define complete symmetric graph. 10) (2) SECTION B Answer all the questions. 11) Prove that the number of vertices of odd degree in a graph is always even. (5) a) [OR] Prove that a simple graph with n vertices and k components can have at (5) (5) 12) 1/2

35

	Prove that a graph G with n vertices, n-1 edges and no circuits is connected.	
a)		
[OR]	Prove that every tree has either one or two centres.	(5)
13)	Write the simplifying steps in elementary reduction.	(5)
a)		(5)
[OR] b)	Prove that non-planarity of Kuratowski's second graph cannot be planar.	(5)
14)	If B is a circuit matrix of a connected graph G with e edges and n vertices prove that Rank of $B = e - n + 1$.	(5)
a)		
[OR] b)	Write any five observations about adjacency matrix.	(5)
15)	Define the following terms: (i) Equivalence relation (ii) Tournament (iii) isolated vertex.	(5)
a)		
[OR] b)	Prove that the (i,j) th entry in X' equals the number of different directed edge sequences of r edges from the ith vertex to the jth vertex.	(5)
	SECTION C	
Answer 3 o	ut of 5 questions.	
16)	Prove that a connected graph G is an Euler graph iff all vertices of G are of even degree.	(10)
17)	Prove that a tree with n vertices has (n-1) edges.	(10)
18)	State and prove Euler's formula.	(10)
19)	If A(G) is an incidence matrix of a connected graph G with n vertices, then prove that the rank of A(G) is n-1.	(10)
20)	Prove that the determinant of every square sub matrix of A, the incidence matrix of a digraph is 1,-1 or 0.	(10)

----End----