Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BCom DEGREE EXAMINATION MAY 2022

(Fourth Semester)

Branch - COMMERCE (e-COMMERCE)

OPERATIONS RESEARCH

Tim	e: Three Hours	- · ·	Taximum. / J Warks
	SECTION-A (1 Answer ALL of	ruestions	
	ALL questions carry EC	QUAL marks	$(10 \times 1 = 10)$
1.	In linear programming problem which satisf	ies the non-negativit	y restriction of basic is
	called	(ii) feasible solution	
	(i) solution	(iv) none of the abo	ove
	(iii) both	(41) 223	
2.	Basic feasible solution is a	(ii) degenerate basi	c feasible solution
÷	(i) non-degenerate basic feasible solution	(iv) none of the abo	ove
	(iii) both (a) and (b)	(IV) none of the abo	
3.	Simplex method starts with a initialization,	which is called	•
٥.	4.5	(II) ICASIOIC BOILDING	
	(iii) basic feasible solution	(iv) all the above	
1	A basic solution to the system $Ax = b$ is cal	lled degenerate if	
╼.	(i) only one basic variable vanish	(11) Ollo Or 1110-4 -	the basic variables vanish
	(iii) both	(iv) none of the ab	ove
		1.1. 0.00	All grant from A
5.	(i) $m+n$ (ii) $m+n+1$	(111) 111 11 11	
6.	An ordered set of at least four cells in provided (i) any two adjacent cells of the ordered se	a transportation tab	ole is said to form a loop ne row or in the same
-	column	1 and not lie in the	same row or column.
	column (ii) no three or more adjacent cells in the c	ordered set he in the	Same tower or or same
	(iii) both (a) and (b)		
	(iv) none of the above		
7	. The objective of the assignment problem	is·	•
: '	(i) to maximize overall profit	(11) to minimize t	overall cost
	(iii) both (a) and (b)	(iv) none of the a	bove
8	8. Networks are also called	Z100X 1	(iv) none
	(i) arrow diagram (ii) diagram	(iii) both	(IV) Hone
(PERT stands for		
	(i) Programme Emerging and Review Te	chnique	
	(ii) Programme Evaluation and Revised	l echnique	
	(iii) Programme Evaluation and Review	Technique	
	(iv) none of the above		
	10. are "Activity – orient	ted" placing the en	nphasis on the descriptions
	associated with activities in a network. (i) PERT (ii) CPM	(iii) both	(iv) none

SECTION - B (35 Marks)

Answer ALL Questions **ALL** Questions Carry **EQUAL** Marks $(5 \times 7 = 35)$

11 (a) Solve the following linear programming problem by graphical method.

Minimizing $Z = 20x_1 + 10x_2$

Subject to,
$$x_1 + 2x_2 \le 40$$
$$3x_1 + x_2 \ge 30$$

$$4x_1 + 3x_2 \ge 60$$

$$x_1, x_2 \ge 0$$

- (b) State the uses and limitations of operations research.
- 12 (a) Differentiate transportation and assignment problems.

- (b) Explain briefly about MODI method.
- 13 (a) What is replacement problem? Describe the various types of replacement policies. (OR)
 - (b) Elucidate money value fixed and money value changes with time models.
- 14 (a) Describe Johnson's rule for n jobs.

(OR)

- (b) Illustrate the characteristics of queuing system.
- 15 (a) State the advantages of PERT and CPM.

(OR)

(b) Give a step-by-step procedure for the critical path method.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

16 Explain the operating procedure of simplex method.

17 Find the initial solution to the following transportation problem using Vogel's

approximation method.

tillitation 1		D	estination	l .		
		$\overline{\mathrm{D}_{1}}$	D_2	$\overline{\mathrm{D}_3}$	D_4	Supply
	F,	3	3	4	1.	100
Factory	Fa	4	2	4	2	125
1 actory	F ₂	1	5	3	2	75
	demand	120	80	75	25	300

- 18 Explain individual and group replacement policy models with suitable illustrations.
- 19 Describe in detail about (M/M/1:∞/FIFO) queuing model with examples.
- 20 Elucidate about construction of network techniques with appropriate real life examples.