PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2022

(Second Semester)

Branch - STATISTICS

PROBABILITY AND DISTRIBUTIONS - I

Time: Three Hours			Maximum: 50 Marks							
	Answ	TON-A (5 Marks) ver ALL questions								
	LL questions	carry EQUAL marks	$(5 \times 1 = 5)$							
1. The outcome of a randor	n experiment	is called as								
(i) Sample space	(ii) Trial	(iii) outcome	(iv) Event							
2. In the case of continuous	s random vari	able the probability a	t a point is always							
(i) negative	(ii) zero	(iii) positive	(iv) finite							
3. If the values taken by a random variable are negative, the negative values will have										
(i) Positive probability										
(ii) negative probability										
(iii) May have negative or positive probabilities										
(iv) Insufficient data										
4. The first central moment	t is always									
(i) negative	(ii) zero	(iii) positive	(iv) finite							
5. If $Var(x)=1$, then $Var(2x \pm 3) = $										
(i) 5	(ii) 16	(iii) 27	(iv) 4							
SECTION - B (15 Marks)										
		er ALL Questions s Carry EQUAL Mar	ks $(5 \times 3 = 15)$							
6 a State and prove	Baye's theor	èm.								
b Let A and B are two events such that $P(A)=3/4$ and $P(B)=5/8$, show that (a) $P(A \cup B) \ge 3/4$ (b) $3/8 \le P(A \cap B) \le 5/8$.										
7 a If $p(x) = \begin{cases} \frac{x}{15}; x = 0, els \end{cases}$										
find (a) $P\{x = 1 \text{ or } 2\}$, and (b) $p\{\frac{1}{2} < X < \frac{5}{2} X > 1\}$.										
b State and prove	additive theor	em of expectation.								
			Cont							

8 a Give the properties of joint distribution function.

OR

- b The joint probability density function of a two -dimensional random variable (X,Y) is given by : $f(x,y) = \begin{cases} 2; 0 < x < 1, 0 < y < x; \\ 0, elsewhere \end{cases}$
 - (i) Find the marginal density function of X and Y.
 - (ii) Find the conditional density function of Y given X = x and conditional density function of X given Y = y.
 - (iii) Check for independence of X and Y.
- 9 a What are the properties of cumulants?

OR

- b State and prove weak law of large numbers.
- 10 a If X and Y are independent continuous r.v.'s then prove that the p.d.f. of U=X+Y is given by:

$$h(u) = \int_{-\infty}^{\infty} f_X(v) f_Y(u - v) dv.$$
OR

b Let f(x, y) = 8xy, 0 < x < y < 1; f(x, y) = 0 elsewhere. Find

(a)
$$E(Y|X = x)$$
, (b) $E(XY|X = x)$, (c) $Var(Y|X = x)$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

- 11 a The odds that a book on statistics will be favourabl'y reviewed by 3 independent critics are 3 to 2, 4 to 3 and 2 to 3 respectively. What is the probability that of the three reviews:
 - (i) All will be favourable,
 - (ii) Majority of the reviews will be favourable,
 - (iii) Exactly one review will be favourable, and
 - (iv) At least one of the reviews will be favourable.

OR

- b (i) Prove the additive theorem of probability for independent events.
 - (ii) Prove the multiplicative theorem of probability for independent events.
- 12 a The diameter, say X, of an electric cable, is assumed to be a continuous random variable with p.d.f.: f(x) = 6x(1-x), $0 \le x \le 1$.
 - (i) Check that the above is a p.d.f.,
 - (ii) Obtain an expression for the c.d.f. of X., .
 - (iii) Compute $P\left(X \le \frac{1}{2} \middle| \frac{1}{3} \le X \le \frac{2}{3}\right)$.

OR

b Suppose that the time in minutes that a person has to wait at a certain bus stop for a bus is found to be a random phenomenon, with a probability function specified by the distribution function is given by

Cont...

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{8}, 0 \le x < 2 \\ \frac{x^2}{16}, 2 \le x < 4 \\ 1, 1, x > 4 \end{cases}$$

- (i) Is the distribution function continuous? If so, give the formula for its probability density function.
- (ii) What is the probability that a person will have to wait in a bus stop.
- (a) more than 2 minutes, (b) less than 2 minutes, and (c) between 1 and 2 minutes?
- (iii) what is the conditional probability that the person will have to wait for a bus for
- (a) more than 2 minutes, given that it is more than 1 minute
- (b) less than 2 minutes, given that it is more than 1 minute?
- 13 a For the adjoining bivariate probability distribution of X and Y, find:
 - (i) $P(X \le 1, Y=2)$,
 - (ii) $P(X \le 1)$,
 - (iii) $P(Y \le 3)$, and
 - (iv) $P(X < 3, Y \le 4)$.

_			· / ·					• • • • • • • • • • • • • • • • • • • •
	X	\ Y	1	2	. 3	4	5	6
		0	0	0	1/32	- 2/32	2/32	3/32
		1	1/16	1/16	1/8	1/8	1/8	1/8
:		2	1/32	1/32	1/64	1/64	0	2/64

OR

b Let X and Y be jointly distributed with p.d.f.:

$$f_{XY}(x,y) = \begin{cases} \frac{1}{4}(1+xy), & |x| < 1, |y| < 1 \\ 0, & otherwise \end{cases}$$

show that X and Y are not independent but X^2 and Y^2 are independent.

14 a State and prove Chebychev's inequality.

OR

- b Let $X_1, X_2, ..., X_n$ be jointly normal with $E(X_i) = 0$ and $E(X_i^2) = 1$ for all i and $Cov(X_i, X_j) = \rho$ if |j i| = 1 and = 0, otherwise Examine if WLLN holds for the sequence $|X_n|$.
- 15 a Two random variable X and Y have the following joint probability density function:

$$f(x,y) = \begin{cases} 2 - x - y; 0 \le x \le 1, 0 \le y \le 1\\ 0, otherwise \end{cases}$$

- Find (i) Marginal probability density function of X and Y:
 - (ii) Conditional density functions,
 - (iii) Var(X) and Var(Y); and
 - (iv) Covariance between X and Y.

OR

b Given the joint density function of X and Y as

$$f(x,y) = \begin{cases} \frac{1}{2}xe^{-y}; & 0 < x < 2, y > 0 \\ 0, & \text{elsewhere} \end{cases}$$

find the distribution of X+Y.