Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(First Semester)

Branch - MATHEMATICS

ANALYTICAL GEOMETRY OF 3D AND TRIGONOMETRY

Tin	ne: Thre	e Hours		Maximum: 50 Marks		
				A (5 Marks)		
			Answer AI	L questions		
			ALL questions carry I		$(5 \times 1 = 5)$	
1.	If th	ne two lines are	e coplanar, they must _			
	(i) i	ntersect	(ii) surface	(iii) ratio	(iv) volume.	
2.	is the locus of a point which moves in such a way that its distance from a fixed point is always constant.					
					· ·	
	(1) S	quare	(ii) sphere	(iii) rectangle	(iv) cone	
3.	The	cones $Ax^2 + I$	zx + 2Hxy = 0 and	i		
	(i) r	eciprocal	y + 2gzx + 2hxy = 0 ar			
	(1) 1	ccipiocai	(ii) polar plane	(iii) Polar line	(iv) vertex.	
4.	is a surface generated by a straight line which is always parallel to a fixed line					
	(i) c		(ii) cylinder	(iii) polygon	(iv) circle	
5.	Cost	$h^2x + \sinh^2x =$				
٥.	(i) c		(ii) cosh2x	(iii) sinhx	(in) 4	
	(1) 0	ODA.	(II) COSIIZX	(III) SIIIIX	(iv) tan x	
			SECTION - 1			
	$(\gamma_{ij}) = (x_i)$	Answer ALL Questions				
	•		ALL Questions Carry	EQUAL Marks	$(5 \times 3 = 15)$	
6.	a)	Prove that t	the lines $\frac{x+1}{-3} = \frac{y+10}{8}$	z-1 x+3 y+1	z-4	
	ω)	110 VC that ($\frac{1}{-3} = \frac{8}{8}$	$=\frac{1}{2},\frac{1}{-4}=\frac{1}{7}=\frac{1}{7}$	1 are coplanar.	
			(01	r)		
	b)	1				
		the planes x	x + 5y - z - 7 = 0, 2x - 5	6y + 3z + 1 = 0.		
7.	a)	Find the ear	uation of the sphere wh	nich has its centre at th	e point (6 . 1. 2)	
	••)	Find the equation of the sphere which has its centre at the point $(6, -1, 2)$ and touches the plane $2x - y + 2z - 2 = 0$.				
		(or)				
	b)	b) Show that the plane $2x - y - 2z = 16$ touches the sphere				
		$x^2 + y^2 + z^2$	-4x + 2y + 2z - 3 = 0	and find the point of co	ontact.	
R	a)	Find the equ	estion of the cone with	wanter O and have our	va tha aoniain	
٠.	u)	a) Find the equation of the cone with vertex O and base curve, the conic in which the surface $ax^2 + by^2 + cz^2 = 1$ is cut by the plane				
		$l_1x + m_1y + n_1z = p.$				
		-117	or (or	•)		
	b)	Find the equ	ations of the tangent p			
		$9x^2 - 4y^2 +$	$16z^2 = 0$ which contain	the line $\frac{x}{x} - \frac{y}{y} - \frac{z}{z}$	·	
			102 0 Willow Contain	$\frac{1}{32} - \frac{1}{72} - \frac{1}{72}$		
)	a)	Find the ear	istion of the oxilinder w	those generators are to	rollel to the a	
,	a)	a) Find the equation of the cylinder whose generators are parallel to the z axis and the guiding curve is $ax^2 + by^2 = cz$, $lx + my + nz = p$.				
		The equatio	n of the z axis is $\frac{x}{0} = \frac{y}{0}$	-= 1 1		
			lor		•	

- If OD is the diameter parallel to a secant APQ through A meeting the b) conicoid at P and Q show that $\frac{AP.AQ}{QD^2}$ is constant.
- Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$. 10. a)

If $\cosh u = \sec \theta$, show that $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$. b)

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 6 = 30)$

- Find the shortest distance between the lines 11. a) $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}; \frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$
 - The Straight lines $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}; \frac{x-\alpha_1}{l_1} = \frac{y-\beta_1}{m_1} = \frac{z-\gamma_1}{n_1}$ are cut by a third b) whose direction cosines are λ , μ , v. Show that the length intercepted on the third line is given by $\begin{vmatrix} \alpha - \alpha_1 & \beta - \beta_1 & \gamma - \gamma_1 \\ l & m & n \\ l_1 & m_1 & n_1 \end{vmatrix} \div \begin{vmatrix} l & m & n \\ l_1 & m_1 & n_1 \\ \lambda & \mu & \nu \end{vmatrix}$ and deduce the length of

Find the equation of the sphere which passes through the circle $x^2 + y^2 + z^2 - 2x - 4y = 0$, x + 2y + 3z = 8 and touches the plane 12. a) 4x + 3y = 25.

A plane passes through a fixed point (a, b, c) and cuts the axes in b) A, B, C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x} + \frac{b}{v} + \frac{c}{z} = 2.$

- Find the condition for the equation 13. a) $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2fxy = 0$ to represent a right circular cone. Obtain the equation of the axis and the vertical angle of the cone.
 - Find the condition for the equation $F(x, y, z) \equiv ax^{2} + by^{2} + cz^{2} + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = 0$ b)

to represent a cone.

If it represents a cone, show that the co-ordinates of the vertex satisfy the equations $\frac{\partial F}{\partial x} = 0$, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$, $\frac{\partial F}{\partial t} = 0$, where t is used to make F(x, y, z)

homogeneous and is equated to unity after differentiation.

- Find the equation of the right circular cylinder described on the circle 14. a) through the points (a, 0, 0), (0, a, 0), (0, 0, a) as a guiding curve.
 - Find the locus of the point of intersection of three mutually b) perpendicular tangent planes to the central conicoid $ax^2 + by^2 + cz^2 = 1$.
- Expand $\sin^3\theta \cos^5\theta$ in a series of sines of multiples of θ . 15. a)

If $\tan (x + iy) = u + iv$, prove that $\frac{u}{v} = \frac{\sin 2x}{\sinh 2v}$. b)