PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(Second Semester)

Branch - MATHEMATICS

ANALYTICAL GEOMETRY

Maximum: 50 Marks Time: Three Hours **SECTION-A (5 Marks)** Answer ALL questions (5x 1 = 5)ALL questions carry EQUAL marks

- What is the semi-latus rectum of $\frac{10}{r} = 3\cos\theta + 4\sin\theta + 5$
 - (i) 4

(iii) 5

- (iv) 2
- The value of λ for which the line $\frac{x-1}{1} = \frac{y-2}{\lambda} = \frac{z+1}{-1}$ and $\frac{x+1}{-\lambda} = \frac{y+1}{2} = \frac{z-2}{1}$ are 2 perpendicular to each other is
 - (i) -1

(ii) 1

(iii) 0

- (iv) 2
- The equation $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ represents a real sphere if the 3
 - (i) equal to zero

(ii) less than zero

(iii) less than or equal to zero

- (iv) greater than zero
- Two cones are said to be ----- if one is the locus of the normal through the 4 vertex to the tangent planes to the other
 - Right circular cone

(ii) Reciprocal cones

(iii) Double right circular cones (iv) Oblique cone

- Which is parallel to the generator of the cylinder? 5
 - (i) Axes

(ii) Directrix

(iii) Line

(iv) Latus rectum

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 3 = 15)$

Trace the curve $\frac{10}{r} = 1 + 3\cos\theta + 4\sin\theta + 5$. 6. a.

- A chord PQ of a conic subtends an angle of 2β of constant magnitude at b. the pole. Find the locus of the intersection of the tangents at P and Q.
- Prove that the line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z-5}{4}$ is parallel to the plane 4x + 4y 5z = 0. 7. a.
 - Prove that the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ are coplanar. b.
- Find the equation of the sphere which has its centre at the point (6, -1, 2) 8. a. and touches the plane 2x - y + 2z - 2 = 0.

(OR)

Show that the plane 2x - y - 2z = 16 touches the sphere b. $x^{2} + y^{2} + z^{2} - 4x + 2y + 2z - 3 = 0$ and find the point of contact.

- 9. a. Find the equation of the right circular cone whose vertex is at the origin, whose axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which has a semi-vertical angle of 60°.
 - b. Show that the equation of a right circular cone whose vertex is O, axis OZ and semi- vertical angle α is $x^2 + y^2 = z^2 \tan^2 \alpha$.
- 10. a. Find the equation of a right circular cylinder of radius 3 with axis $\frac{x+2}{3} = \frac{y-4}{6} = \frac{z-1}{2}$ (OR)
 - b. Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and guiding curve $x^2 + y^2 = 1$, z = 3.

SECTION -C (30 Marks) Answer ALL questions ALL questions carry EQUAL Marks (5 x 6 = 30)

- 11. a. Find the equation of the chord of the conic $\frac{l}{r} = 1 + e \cos \theta$ joining the points whose vectorial angles are $\alpha \beta$ and $\alpha + \beta$.
 - b. If two conics have a common focus, show that two of their common chords pass through the point of intersection of their directrices.
- 12. a. Find the equation of the projection of the line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$ on the plane x+2y+z=6.
 - b. Find the shortest distance between the lines $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$ and $\frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$ and also find equation of line of shortest distance.
- 13. a. Find the equation of the sphere through the points (2, 3, 1), (5, -1, 2), (4, 3, -1), and (2, 5, 3)
 - b. Find the equation of the sphere which passes through the circle $x^2 + y^2 + z^2 2x 4y = 0$, x + 2y + 3z = 8 and touches the plane 4x + 3y = 25.
- 14. a. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the co-ordinate axes in A, B, C. Prove that the equation to the cone generated by lines drawn from O to meet the circle ABC is $yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0$ (OR)
 - b. Prove that the general equation to a cone which touches the three co-ordinate planes is $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$
- 15. a. Find the equation of the cylinder whose generators are parallel to the z-axis and the guiding curve is $ax^2 + by^2 = cz$, lx + my + nz = p.
 - b. Discuss the equation of the right circular cylinder described on the circle passing through the points (a, 0, 0), (0, a, 0), (0, 0, a) as a guiding curve.