PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(Fifth Semester)

Branch - MATHEMATICS

REAL ANALYSIS

Time:	Three Hours	Maximum: 75 Marks
	SECTION-A (Answer ALL ALL questions carry E	questions
1.	If $p \in E$ and p is not a limit point of E , (i) Closed (iii) Isolated point	then p is called an of E . (ii) Open (iv) Interior point
2.	The set of all complex z such that $ z <$ (i) Open, Bounded, and not closed (iii) Closed perfect and bounded	(ii) Open perfect and bounded
3.	If F is closed and K is compact, then F (i) Compact (iii) Open	f K is (ii) Closed (iv) Not empty
4.	Every bounded infinite subset of \mathcal{R}^k has (i) Weierstrass Theorem (iii) Cantor set	a limit point in \mathcal{R}^k (ii) Heine Borel Theorem (iv) Baire's Theorem
5.	$\sum \frac{1}{n^p} \text{ converges if}$ (i) $p < 1$ (iii) $p > 1$	(ii) $p \le 1$ (iv) $p \ge 1$
6.	If $\sum a_n$ converges absolutely, then (i) $\sum a_n $ diverges (iii) $\sum a_n$ converges	(ii) $\sum a_n $ converges (iv) $\sum z_n $ converges
7.	A mapping f of a set E into \mathcal{R}^k is said to M such that $ f(x) \leq M$ for all $x \in E$ (i) Bounded (iii) Open set	be if there is a real number (ii) Closed (iv) Co-ordinate functions
8	 For the function f(x) = { x, x is rational } 0, x is irrational (i) f has the discontinuity of the second kind at x = 0 (ii) f has the discontinuity of the second kind at every other point (iii) f is continuous at x = 0 and has a discontinuity of the second kind at every other point (iv) f is continuous at x = 0 	
	Let f be defined on $[a, b]$ if f has a $f'(x)$ exists then $f'(x) = 0$ (i) Local maximum (iii) Maximum	at a point $x \in (a, b)$ and if (ii) Local minimum (iv) Minimum

10. Let f be defined on [a, b]. If f is differentiable at a point $x \in [a, b]$ then f is

(i) Differentiable

(ii) not differentiable

(iii) continuous

(iv) not continuous

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 5 = 25)$

11 a Prove that every neighborhood is an open set.

OR

- b Prove that a set E is open if and only if its complement is closed.
- 12 a Prove that compact subsets of metric spaces are closed.

OR

- b Let p be a non-empty perfect set in \mathcal{R}^k then prove that P is uncountable.
- 13 a Prove that the sub sequential limit of a sequence $\{p_n\}$ is a metric space X form a closed subset of X.

OR

- b State and prove Root test.
- 14 a Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(v)$ is open in X for every open set Y in Y.

OR

- b Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that f(x) is compact.
- 15 a Show that the function f be defined by $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is not derivable at x = 0.

OR

b State and prove a Generalized Mean value Theorem.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 8 = 40)$

16 a Let $\{E_n\}$ n=1,2,3,... be a sequence of countable sets and put $=\bigcup_{n=1}^{\infty}E_n$, then prove that S is countable.

OR

- b Define neighborhood and limit point.
- c) If X is a metric space and $E \subset X$ then prove that
 - i) \bar{E} is closed
 - ii) $E = \overline{E}$ if and only if E is closed
 - iii) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$
- 17 a Suprose $K \subset Y \subset X$, prove that K is compact relative to X if and only if K is compact relative to Y.

O3

b State and prove He ne-Borel Theorem.

Cont...

- 18 a Suppose $\{S_n\}$ is monotonic, then prove that $\{S_n\}$ converges if and only if it is bounded
 - b If p > 0 and \propto is real then prove that $\lim_{n \to \infty} \frac{n^{\infty}}{(1+p)^n} = 0$

OR

- c) Prove that $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$
- d) Prove that e is irrational
- 19 a Let f be a continuous mapping of a compact metric space X in to a metric space Y, then prove that f is uniformly continuous on X.

OR

- b Suppose f is a continuous mapping of a compact metric space X into a metric space Y, then prove that f(x) is compact.
- c If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X, then prove that f(E) is connected.
- 20 a State and prove the chain rule for differentiation.

OR

b State and prove Taylor's Theorem.

Z-Z-Z

END