PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(Fifth Semester)

Branch - MATHEMATICS

ALGEBRA

1 1111	e: Three Hours Maximum: 75 Marks
- :	SECTION-A (10 Marks)
	Answer ALL questions
	ALL questions carry EQUAL marks $(10 \times 1 = 10)$
1	If S is a nonempty set, then A(S) is the set of all (i) identity mapping of S onto itself (ii) 1-1 mapping of S onto itself (iii) onto mapping of S onto itself (iv) none of these
2	If G is a group of even order, then it has an element $a \neq e$ satisfying $a^2 =$ (i) a^{-1} (ii) a (iv) 2
3	Every subgroup of an abelian group is (i) right coset (ii) left coset (iii) normal (iv) quotient group
4	If ϕ is a homomorphism of G into \overline{G} , then $(e) = \underline{\hspace{1cm}}$. (i) e (ii) \overline{e} (iv) 1
5	If H is a subgroup of G, for every $g \in G$, gHg^{-1} is_of G. (i) subgroup (ii) normal subgroup (iii) quotient subgroup (iv) cyclic subgroup
6	$(1\ 2\ 4\ 7)^{-1} = $ (i) $(2\ 1\ 4\ 7)$
7	If R is the ring of integers mod 7, then R is a (i) commutative ring (ii) non commutative ring (iii) integral domain (iv) field
8	Any field is an (i) integral domain (ii) zero divisor (iii) normal (iv) perfect
9	Every integral domain can be imbedded in a (i) ring (ii) commutative ring (iii) division ring (iv) field
10	If $a b$ and $a c$, then (i) $a (a \pm b)$ (ii) $a (b \pm c)$ (iii) $b c$ (iv) $b a$

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

- 11 a Given G is a group, then prove the following
 - (i) The identity element of G is unique (ii) For every $a \in G$ has a unique inverse in G.
 - b If H is a non-empty finite subset of a group G and H is closed under multiplication, then prove that H is a subgroup of G.
- 12 a Prove that HK is a subgroup of G if and only if HK = KH.

OR

- b If ϕ is a homomorphism of G into \overline{G} with kernel K, then prove that K is a normal subgroup of G.
- 13 a Let G be a group and ϕ is an automorphism of G. If $a \in G$ is of order (a) > 0, then prove that $o(\phi(a)) = o(a)$.

OR

b Find the orbit and cycle of the following permutation.

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$$

(ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$

14 a Define ring with 2 examples.

OR

- b Given ϕ is a homormorphism of R into R', then prove that $\phi(0) = 0$ and $\phi(-a) = -\phi(a)$ for $a \in R$.
- 15 a Given R is a commutative ring with unit element, whose only ideals are (0) and Ritself. Then prove that R is a field.

OR

b Given R is a Euclidean ring. Suppose that for $a, b, c \in R$, a|bc but (a, b) = 1, then prove that a|c.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 8 = 40)$

- 16 a Let G be the set of all 2 x 2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are real numbers such that $ad bc \neq 0$. Then show that G is a non-abelian group
 - b State and prove Lagrange's theorem.
- Given H and K are finite subgroups of G with orders (H) and (K) respectively, then prove that $(HK) = \frac{o(H)o(K)}{O(H \cap K)}$

OF

- b State and prove Cauchy's theorem for abelian group.
- 18 a State and prove Cayley's theorem.

OR.

- b Prove that every permutation is a product of 2 cycles.
- 19 a Prove that a finite integral domain is a field.

OR

- b Given U is an ideal of the ring R, then prove that R / U is a ring and is a homomorphic image of R.
- 20 a If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R / M is a field.

OR

b State and prove unique factorization theorem.

Z-Z-Z

END