PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2022

(Third Semester)

COMPUTER SCIENCE WITH DATA ANALYTICS

LINEAR ALGEBRA

Time: 3 Hours

Maximum: 50 Marks

<u>SECTION-A (5 Marks)</u>

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

1. A 1-1 and onto linear transformation is called -----

- (i) Epimorphism
- (ii) Monomorphism
- (iii) Homomorphism

(iv) Isomorphism

2. The dimension of a vector space C over R is -----

- (i) 2
- (ii) 3

(iii) 1

(iv) 5

3. If x and y are orthogonal iff -----

- (i) < x, y >= 0
- (ii) < x, y > = 1
- (iii) x = y

(iv) x = 0

4. A square matrix A is said to be idempotent if $A^2 = ----$.

- (i) \bar{A}
- (ii) A

- (iii) $-A^T$

5. The characteristic roots of skew hermitian matrix are all -----

- (i) Imaginary
- (ii) Real

- (iii) Positive
- (iv) Negative

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

6. (a) Prove that the intersection of two sub-spaces of a vector space is a subspace.

(OR)

- (b) Let $S=\{v_1, v_2, v_3,...,v_n\}$ be a linearly dependent set of vectors in V iff there exists a Vector $v_k \in S$ such that v_k is a linear combination of the preceding vectors
- 7. (a) Let $S=\{v_1, v_2, v_3,...,v_n\}$ be a linearly independent set of vectors in V iff there exists a vector $v_k \in S$ such that v_k is a linear combination of the preceding vectors v_1 , v_2 , (OR)
 - (b) Let V and W be two finite dimensional vector spaces over a field F.Let dim V=m and dim W=n. Then prove that L(V,W) is a vector space of dimension mn over F.
- 8. (a) Let V be the vector space of polynomials with inner product given by

$$< f, g> = \int_{0}^{1} f(t)g(t) dt$$
, $f(t) = t+2$ and $g(t) = t^{2}-2t-3$

Find (i) < f,g > (ii) ||f||.

(OR)

(b) Let W₁ and W₂ be subspaces of a finite dimensional inner product space. Then prove that

(i)
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$

$$(ii) (W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$

9. (a) Prove that any square matrix A can be expressed uniquely as the sum of a symmetric matrix and a skew symmetric matrix.

(OR)

9. (b) Reduce the matrix
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 2 \\ 2 & 4 & -2 \end{pmatrix}$$

10. (a) State and prove Cayley Hamilton theorem.

(or)

(b) Prove that the characteristic roots of a Hermitian matrix are all real.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11. (a) State and prove Fundamental theorem of homomorphism in Vector spaces.
 - (b) Let V be a vector space over a field F and S be any non-empty subset of V. Then prove the following
 - (i) L(S) is a subspace of V.
 - $(ii) S \subseteq L(S)$.
 - (iii) L(S) is the smallest subspace of V containing S.
- 12. (a) Let V be a vector space over a field F. Let W be a subspace of V. Then prove the following

$$(i)\dim W \leq \dim V \quad (ii)\dim \frac{V}{W} = \dim V - \dim W.$$

- (b) Let V be a finite dimensional vector space over a field F. Let A and B be subspaces of V. Then prove that $\dim(A+B)=\dim A + \dim B - \dim(A \cap B)$.
- (a) Prove that every finite dimensional inner product space has an orthonormal basis. OR
 - (b) Prove the norm defined in an inner product space V has the following properties.

i)
$$|\langle x, y \rangle| \le ||x|| \, ||y||$$

ii)
$$||x + y|| \le ||x|| + ||y||$$

14. (a) If
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 show that $A^3 - 6A^2 + 7A + 2I = 0$.

- (b) Compute the inverse of the matrix $\begin{pmatrix}
 1 & 2 & 3 \\
 0 & -1 & 4 \\
 -2 & 2 & 1
 \end{pmatrix}$
- 15. (a) Show that the equations

$$x + y + z = 6$$

$$x + 2y + 3z = 14$$

$$x + 4y + 7z = 30$$

are consistent and solve them.

OR

(b) Find the eigen values and eigen vectors of the matrix A=