

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

PG DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

TRANS DISCIPLINARY COURSE
(Common to PG Programmes)

PHYSICS FOR MATHEMATICAL SCIENCES

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions.

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	What is the other name for Newton's first law? a) Law of force b) Law of inertia c) Law of gravity d) Law of momentum	K1	CO1
	2	Which velocity refers Muzzle velocity. a) Velocity of a car b) Initial velocity of a bullet c) Velocity of sound d) Final velocity of a rocket	K2	CO1
2	3	Define Impulse? a) Force \times Distance b) Force \times Time c) Work \times Time d) Power \times Time	K1	CO2
	4	How the position is expressed in spherical polar coordinates? a) x, y, z b) r, θ , ϕ c) v, t d) u, v	K2	CO2
3	5	Identify the ideal gas equation. a) $PV = nRT$ b) $PV = RT$ c) $PV = T/n$ d) $PV = n^2RT$	K1	CO3
	6	Choose the physical quantity in which the average kinetic energy of a gas depends. a) Pressure b) Temperature c) Volume d) Density	K2	CO3
4	7	Who explained the distribution of energy in black body spectrum? a) Rayleigh b) Planck c) Einstein d) Bohr	K1	CO4
	8	Identify the expression for Photon energy. a) mc^2 b) hv c) h/p d) $1/2 mv^2$	K2	CO4
5	9	Bohr's model successfully explains which spectrum? a) Hydrogen spectrum b) Helium spectrum c) Neon spectrum d) All elements	K1	CO5
	10	Name the force on a charged particle in a magnetic field. a) Centripetal force b) Lorentz force c) Coulomb force d) Coriolis force	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

(5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Analyze the role of force and mass in Newton's laws of motion.	K5	CO1
		(OR)		
2	11.b.	Assess dynamics of particle by using Newton's second law.	K3	CO2
	12.a.	Summarize briefly about Cartesian and Spherical polar coordinates.		
3	12.b.	(OR)	K4	CO3
	13.a.	State and explain the law of conservation of momentum.		
4	13.b.	Derive the expression for mean, root mean square and most probable speeds of gas molecules.	K4	CO4
	14.a.	(OR)		
5	14.b.	Derive the ideal gas equation from the kinetic theory assumptions.	K2	CO5
	15.a.	Define black body radiation. Illustrate the distribution of energy in black body spectrum.		
		(OR)		
	15.b.	Derive De Broglie wavelength expression with necessary theory.		
	15.a.	Discuss about Lorentz transformations.		
		(OR)		
	15.b.	Illustrate the use of matrices in symmetry operations.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

(3 × 10 = 30)

Module No.	Question No.	Question	K Level	CO
1	16	Describe the Newton's first law of motion with suitable examples.	K2	CO1
2	17	Explain Newton's second law in terms of momentum and illustrate the impulse-momentum theorem with an example.	K4	CO2
3	18	Evaluate the specific heat capacity of gases using equipartition of energy.	K5	CO3
4	19	Summarize the significance of Schrödinger's wave equation with the relevant numerical solution to it.	K5	CO4
5	20	Discuss the postulates of Bohr model of an atom in detail.	K3	CO5