

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - STATISTICS

APPLIED OPERATIONS RESEARCH

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

(5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	Explain the steps of the Dual Simplex Method with an example. (OR)	K3	CO1
	11.b.	Solve using Dual Simplex Method: Maximize $Z=3x+2y$ subject to $x+y \geq 4$, $x+2y \geq 6$, $x, y \geq 0$		
2	12.a.	Derive the formula for EOQ (no shortage). (OR)	K2	CO2
	12.b.	Given $D = 1200$ units/year, $S = ₹60/\text{order}$, $H = ₹3/\text{unit/year}$. Find EOQ.		
3	13.a.	Define performance measures of a queuing system. (OR)	K2	CO3
	13.b.	Arrival rate $\lambda = 4/\text{hr}$, service rate $\mu = 6/\text{hr}$. Find average number of customers in the system.		
4	14.a.	Explain the PERT expected time formula. (OR)	K2	CO4
	14.b.	Discuss about the cost and Time Analysis (crashing).		
5	15.a.	State the Kuhn-Tucker conditions for nonlinear programming. (OR)	K2	CO5
	15.b.	Write a short note on Goal Programming.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

(3 × 10 = 30)

Module No.	Question No.	Question	K Level	CO
1	16	Solve the following Linear Programming Problem using the Dual Simplex Method: Maximize $Z=3x_1+2x_2$ Subject to $2x_1+x_2 \geq 6$ $x_1+3x_2 \geq 9$ $x_1, x_2 \geq 0$	K3	CO1
2	17	A company uses 5,000 units of a product per year at ₹10 per unit. Ordering cost = ₹40 per order, carrying cost = 10% per annum. Find: a) EOQ b) Number of orders per year c) Total annual cost	K3	CO2
3	18	In a service centre, customers arrive at an average rate of 10 per hour and are served at an average rate of 15 per hour. Find: a) Average number of customers in the system (L_s) b) Average number waiting (L_q) c) Average time in system (W_s) d) Average waiting time in queue (W_q)	K3	CO3
4	19	Explain the Monte Carlo Simulation Method for project scheduling.	K2	CO4
5	20	Explain the difference between Quadratic Programming and Linear Programming.	K2	CO5