

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)
MSC DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – PHYSICS

SOLID STATE PHYSICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Explain the energy quantization in a three-dimensional infinite potential well. Derive the expression for the energy levels of a particle confined in a cubic box of side a . (OR)	K2	CO1
	11.b.	Describe the role of free electrons in contributing to the electric specific heat of metals and also derive its expression.		
2	12.a.	Apply the Einstein model to calculate the specific heat of a solid at high and low temperatures. (OR)	K3	CO2
	12.b.	Illustrate the application of Bloch's theorem in explaining the motion of electrons in a periodic potential.		
3	13.a.	Apply the concept of dipole moment and polarization to derive the expression for the electric field of a dipole. (OR)	K3	CO3
	13.b.	Differentiate and explain the piezoelectric, pyroelectric and ferroelectric properties of crystals and highlight their practical applications.		
4	14.a.	Explain the response of substance to external magnetic field and the atomic theory of magnetism. (OR)	K5	CO4
	14.b.	Evaluate how spontaneous magnetization in ferromagnetic materials varies with temperature.		
5	15.a.	Explain the different sources that can lead to superconductivity in materials. (OR)	K5	CO5
	15.b.	Derive the London equation and explain its significance in understanding the electromagnetic response of superconductors.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Apply the particle in a box model to calculate the allowed energy levels of an electron confined in a one-dimensional box of length a . Show how quantization arises for varies n values with diagram.	K3	CO1
2	17	Evaluate the significance of the Debye temperature and explain how it determines the behavior of specific heat in different materials.	K4	CO2
3	18	Describe the concept of the local electric field inside a dielectric and derive the expression for depolarization field, Lorentz field and field of dipoles inside cavity for an atom.	K2	CO3
4	19	Derive and evaluate the Langevin's classical theory of diamagnetism.	K5	CO4
5	20	Describe the concept of phonon-mediated electron pairing in BCS theory and its importance in the formation of the superconducting state.	K5	CO5