

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

SECTION II
Answer ALL questions

ALL questions carry EQUAL marks (10 x 1 = 10)

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

$$\underline{(5 \times 7 = 35)}$$

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$				
Module No.	Question No.	Question	K Level	CO
1	11.a.	<p>Let X be a continuous random variable with p.d.f $f(x) = kx(1-x)$, with range space $R : \{x : 0 \leq x \leq 1\}$. Find k and determine a number b such that $P(x \leq b) = P(x \geq b)$.</p> <p style="text-align: center;">(OR)</p>	K3	CO3
	11.b.	<p>The joint probability density function of two dimensional random variable X and Y is given by</p> $f(x, y) = \begin{cases} 2, & 0 \leq x \leq y \leq 1 \\ 0, & \text{otherwise} \end{cases}$ <p>Find the distribution of $U = X + Y$.</p>		

Cont...

2	12.a.	<p>The probability function of two dimensional random variables X and Y is shown below:</p> <table border="1"> <tr> <th>X Y</th><th>0</th><th>1</th><th>2</th><th>3</th><th>$h(y)$</th></tr> <tr> <td>1</td><td>1/18</td><td>3/18</td><td>1/18</td><td>1/18</td><td>6/18</td></tr> <tr> <td>2</td><td>2/18</td><td>2/18</td><td>1/18</td><td>2/18</td><td>7/18</td></tr> <tr> <td>3</td><td>1/18</td><td>1/18</td><td>2/18</td><td>1/18</td><td>5/18</td></tr> <tr> <td>$g(x)$</td><td>1/18</td><td>6/18</td><td>4/18</td><td>4/18</td><td>1.00</td></tr> </table> <p>Find</p> <ol style="list-style-type: none"> $E(3X-2Y)$ $E(XY)$ $E(X-3)$ $E(Y+1)$ <p>(OR)</p>	X Y	0	1	2	3	$h(y)$	1	1/18	3/18	1/18	1/18	6/18	2	2/18	2/18	1/18	2/18	7/18	3	1/18	1/18	2/18	1/18	5/18	$g(x)$	1/18	6/18	4/18	4/18	1.00	K3	CO3
X Y	0	1	2	3	$h(y)$																													
1	1/18	3/18	1/18	1/18	6/18																													
2	2/18	2/18	1/18	2/18	7/18																													
3	1/18	1/18	2/18	1/18	5/18																													
$g(x)$	1/18	6/18	4/18	4/18	1.00																													
<p>12.b. The joint probability density function of two dimensional random variable X and Y is given below:</p> $f(x, y) = 2; 0 < x < y, 0 < y < 1,$ <p>Find $\text{cov}(XY)$.</p>																																		
3	13.a.	<p>The r^{th} raw moment (moment about zero) of a random variable X. $\mu'_r = (r+1)! 2^r$. Find cumulants of the variable X and comment on the shape characteristics of the distribution of X.</p> <p>(OR)</p>	K4	CO4																														
	13.b.	<p>The joint probability density function of two dimensional random variable X_1 and X_2 is given by $f(x_1, x_2) = e^{-(x_1+x_2)}$; $x_1 \geq 0, x_2 \geq 0$. Find the characteristic function of the random variables and hence moments.</p>																																
4	14.a.	Derive the first three moments of the Poisson distribution.	K4	CO4																														
	14.b.	(OR)																																
5	15.a.	Write down any two properties of rectangular distribution.	K5	CO5																														
	15.b.	Show that $F_{n1, n2} = 1/F_{n2, n1}$. (OR) Prove that normal distribution is a particular case of χ^2 -distribution with $n-1$ degrees of freedom.																																

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	<p>The two dimensional random variable X and Y have the joint probability density function</p> $f(x, y) = \begin{cases} 21x^2y^3, & 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases}$ <p>Find marginal and conditional distributions of X and Y. Also, find the probability of the event A, where $A: \{Y: y \geq \frac{1}{2}\}$.</p>	K4	CO4
2	17	The probability distribution function of continuous random variable X is given by $f(x) = e^{-x}, x > 0$. Find moment generating function of X and hence comment on the shape of the distribution of X.	K3	CO3
3	18	<p>The continuous random variable X has the probability distribution function</p> $f(x) = \frac{1}{\Gamma_n} e^{-x} x^{n-1}, x > 0.$ <p>Find its moments using characteristic function and comment on shape characteristic of the distribution.</p>	K4	CO4
4	19	Derive the first four moments of the binomial distribution.	K4	CO4
5	20	Let x_1, x_2, \dots, x_n be a random sample from normal population $N(\mu, \sigma^2)$. Then prove (i) \bar{x} and (ii) $\frac{ns^2}{\sigma^2}$ are independently distributed as normal and chi-square respectively.	K5	CO5