

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch - MATHEMATICS

MAJOR ELECTIVE COURSE - II : STOCHASTIC DIFFERENTIAL EQUATIONS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 \times 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	Two subsets $A, B \in \mathcal{F}$ are called independent if $P(A \cap B)$ is equal to (a) $P(A) \cdot P(B)$ (b) $P(A) + P(B)$ (c) $P(A) - P(B)$ (d) $P(A \cup B)$	K1	CO1
	2	If $A_1, A_2, \dots \in \mathcal{F}$ and $\{A_i\}_{i=1}^{\infty}$ is disjoint then $P(\bigcup_{i=1}^{\infty} A_i) =$ (a) $\sum_{i=1}^{\infty} P(A_i)$ (b) $\bigcap_{i=1}^{\infty} A_i$ (c) $\sum_{i=1}^{\infty} P(A_i)$ (d) $\bigcup_{i=1}^{\infty} P(A_i)$	K2	CO1
2	3	Let $f, g \in V(0, T)$ and let $0 \leq S < U < T$ then $E \left[\int_S^T f dB_t \right] =$ (a) Constant (b) 0 (c) σ - Algebra (d) Measurable	K1	CO2
	4	Let $\{N_t\}_{t \geq 0}$ be an increasing family of σ - Algebra of subset of Ω . A process $g(t, \omega) \times \Omega \rightarrow \mathbb{R}^n$ is called N_t adopted if for each $t \geq 0$ the function $w \rightarrow g(t, w)$ is (a) 1-dimensional (b) F_t - measurable (c) N_t - measurable (d) B_t - measurable	K2	CO2
3	5	For each n , Let X_n be a non-negative continuous function on \mathbb{R} such that $\int_{-\infty}^{\infty} x_n(x) dx =$ (a) 0 (b) ∞ (c) $-\infty$ (d) 1	K1	CO3
	6	The linear span of random variables of the type $xp \left\{ \int_0^T h(t) dB_t(w) - \frac{1}{2} \int_0^T h^2(t) dt \right\}, h \in L^2(0, T)$ is (a) Continuous in $L^2(\mathcal{F}_r, P)$ (b) Dense in $L^2(\mathcal{F}_r, P)$ (c) Bounded in $L^2(\mathcal{F}_r, P)$ (d) Open in $L^2(\mathcal{F}_r, P)$	K2	CO3
4	7	$M_t = \begin{bmatrix} X_t \\ Z_t \end{bmatrix} \in \mathbb{R}^2$ is a (a) Filtering (b) Gaussian Process (c) Martingale (d) Innovation Process	K1	CO4
	8	$E[N_t^2] =$ (a) $\int_0^t D^2(s) ds$ (b) $\int_0^{\infty} D^2(s) ds$ (c) $\int_0^t D(s) ds$ (d) $\int_0^t N_t ds$	K2	CO4
5	9	Let B_t be Brownian motion on \mathbb{R} , $B_0 = 0$ and define $X_t = X_t^x = x \cdot e^{ct + \alpha B_t}$ where c, α are constants then X_t is called (a) Brownian Process (b) Markov Process (c) Innovation Process (d) Gaussian Process	K1	CO5
	10	Let B_t^x be 1-dimensional Brownian motion starting at $x \in \mathbb{R}^+$ put $\tau = \inf\{t > 0; B_t^x = 0\}$ then for all $x > 0$, $E^x[\tau] =$ (a) 0 (b) $-\infty$ (c) 1 (d) ∞	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Explain the following stochastic models : (i) Filtering problem (ii) Optimal stopping problem (OR)	K3	CO1
	11.b.	If $X, Y: \Omega \rightarrow \mathbb{R}^n$ are two given functions then prove that Y is H_x measurable if and only if there exists a Borel measurable function $g: \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $Y = g(X)$.		
2	12.a.	State and prove Itô isometry.	K3	CO2
		(OR)		
3	12.b.	Compare the Itô Stratanovich Integrals.	K2	CO3
	13.a.	State and prove 1- dimensional Itô formula. (OR)		
4	13.b.	State and prove the Itô representation theorem.	K3	CO4
	14.a.	Prove that $\mathcal{L}(Z, T) = \left\{ C_0 + \int_0^T f(t) dZ_t \right\}; f \in L^2(0, T) C_0 \in \mathbb{R}$. (OR)		
5	14.b.	Explain Noisy observation of a population growth.	K2	CO5
	15.a.	Let $f \in C^2$ then prove that $f \in D_A$ and $Af = \sum_i b_i \frac{\partial f}{\partial x_i} + \frac{1}{2} \sum_{i,j} (\sigma \sigma^T)_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j}$. (OR)		
5	15.b.	Consider n dimensional Brownian motion $B = (B_1, \dots, B_n)$ starting at $a = (a_1, \dots, a_n) \in \mathbb{R}^n$ ($n \geq 1$) and assume $ a < R$ what is the expected value of the first exit time T_k of B from the ball $K = K_R = \{x \in \mathbb{R}^n; x < R\}$?		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	State and prove Kolmogorov's extension Theorem.	K4	CO1
2	17	Let $f \in V(0, T)$ then prove that there exist a t - continuous version $\int_0^t f(s, \omega) dB_s(\omega), 0 \leq t \leq T$.	K3	CO2
3	18	Suppose $f(s, \omega)$ is continuous and of bounded variation with respect to $s \in [0, t]$ for a.a.w then prove that $\int_0^t f(s) dB_t - \int_0^t B_s df_s$.	K5	CO3
4	19	State and prove Noisy observations of a Brownian motion.	K3	CO4
5	20	State and prove the Markov property for Itô diffusions.	K4	CO5