

# **PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)**

**MSc DEGREE EXAMINATION DECEMBER 2025**  
**(Third Semester)**

## Branch - MATHEMATICS

## **MAJOR ELECTIVE COURSE – II: NUMBER THEORY & CRYPTOGRAPHY**

Time: Three Hours

**Maximum: 75 Marks**

**SECTION-A (10 Marks)**

### **Answer ALL questions**

**ALL** questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

**Cont...**

**SECTION - B (35 Marks)**

Answer ALL questions

ALL questions carry EQUAL Marks

(5 × 7 = 35)

| Module No. | Question No. | Question                                                                                                               | K Level | CO  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 11.a.        | Prove that $F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ .<br>(OR)                                                 | K1      | CO1 |
|            | 11.b.        | Find x, y such that $(87, 27) = 87x + 27y$ .                                                                           |         |     |
| 2          | 12.a.        | If n is composite, and if p is the least prime factor of n, then prove that $p \leq \sqrt{n}$ .<br>(OR)                | K4      | CO2 |
|            | 12.b.        | If $n > 1$ , then prove that the canonical factorization of n is unique.                                               |         |     |
| 3          | 13.a.        | State and prove Chinese Remainder Theorem.<br>(OR)                                                                     | K3      | CO3 |
|            | 13.b.        | State and prove Wilson's theorem.                                                                                      |         |     |
| 4          | 14.a.        | If f is an arithmetic function such that $f(1) \neq 0$ , then prove that $f^{-1}$ exists.<br>(OR)                      | K6      | CO4 |
|            | 14.b.        | If p is an odd prime and $(a, p) = 1$ , then prove that $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$ . |         |     |
| 5          | 15.a.        | Find the inverse of $A = \begin{pmatrix} 2 & 3 \\ 7 & 8 \end{pmatrix} \in M_2(\mathbb{Z}/26\mathbb{Z})$<br>(OR)        | K5      | CO5 |
|            | 15.b.        | Explain ElGamal cryptosystem.                                                                                          |         |     |

**SECTION - C (30 Marks)**

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 × 10 = 30)

| Module No. | Question No. | Question                                                                                                                                                                                                                                                  | K Level | CO  |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| 1          | 16           | (i) If $ab = 4k-1$ , then prove that $a = 4m-1$ for some m or $b = 4n-1$ for some n.<br>(ii) State and prove Euclid's Lemma.                                                                                                                              | K3      | CO1 |
| 2          | 17           | For any natural number, n, prove that $n! = \prod p^{\sum_{k \geq 1} \left[ \frac{n}{p^k} \right]}$ the product being taken over all primes.                                                                                                              | K4      | CO2 |
| 3          | 18           | (i) Solve the congruence $x^3 - 5x + 1 \equiv 0 \pmod{27}$ .<br>(ii) If p is an odd prime, $p \mid (a^2 + b^2)$ , and $(a, b) = 1$ , then prove that $p \equiv 1 \pmod{4}$ .                                                                              | K5      | CO3 |
| 4          | 19           | State and prove Euler's theorem.                                                                                                                                                                                                                          | K2      | CO4 |
| 5          | 20           | Suppose we known that our adversary is using an enciphering matrix A in the 26-letter alphabet. We intercept the ciphertext "WKNCCHSSJH" and we know that the first word is "GIVE". We want to find the deciphering matrix $A^{-1}$ and read the message. | K6      | CO5 |