

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2025

(Third Semester)

Branch - MATHEMATICS

DIFFERENTIAL GEOMETRY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

pModule No.	Question No.	Question	K Level	CO
1	11.a.	Show that if a curve is given in terms of a general parameter u , then the equation of the osculating plane corresponding to $[\vec{R} - \vec{r}(0), \vec{r}'(0), \vec{r}''(0)] = 0$ is $[\vec{R} - \vec{r}, \vec{r}', \vec{r}''] = 0$ (OR)	K3	CO2
	11.b.	If the radius of the spherical curvature is constant, prove that the curve either lies on the sphere or has constant curvature.		
2	12.a.	Derive the first fundamental form. (OR)	K3	CO2
	12.b.	Find the coefficients of the direction which makes an angle $\pi/2$ with the direction whose coefficients are (ℓ, m) .		
3	13.a.	Prove that every helix on a cylinder is a geodesic. (OR)	K3	CO2
	13.b.	Prove that if (λ, μ) is the geodesic curvature vector, then $\kappa_g = \frac{-H\lambda}{Fu' + Gv'} = \frac{H\mu}{Eu' + Fv'}$		
4	14.a.	Show that principal directions corresponding to the principal curvatures are $(EM - FL)l^2 + (EN - GL)lm + (FN - GM)m^2 = 0$. (OR)	K3	CO3
	14.b.	Prove that the edge of regression is the curve itself.		
5	15.a.	Prove that the only compact surfaces with constant Gaussian curvature are spheres. (OR)	K3	CO3
	15.b.	Explain complete surfaces.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Prove that a necessary and sufficient condition for a curve to be helix is that the ratio of the curvature to torsion is constant at all points.	K4	CO4
2	17	If θ is the angle at the point (u, v) between the two directions given by $P du^2 + 2Q du dv + R dv^2 = 0$ then prove that $\tan \theta = \frac{2H(Q^2 - PR)^{\frac{1}{2}}}{\bar{E}R - 2\bar{F}Q + \bar{G}P}$	K4	CO4
3	18	Find the geodesic curvature of the parametric curve $v = \text{constant}$.	K4	CO4
4	19	Prove that a necessary and sufficient condition for a surface to be a developable is that its Gaussian curvature shall be zero.	K4	CO5
5	20	State and prove Hilbert's lemma.	K4	CO5