

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - MATHEMATICS

REAL ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	If f is differentiable in (a, b) and $f'(x) \geq 0$ for all $x \in (a, b)$, then f is a) Monotonically increasing b) Constant c) Monotonically decreasing d) oscillating	K1	CO1
	2	If f is a real continuous function on $[a, b]$ which is differentiable in (a, b) , then there is a point $x \in (a, b)$ at which $f(b) - f(a) =$ a) $(b-a)f''(x)$ b) $2(b+a)f'(x)$ c) $(b-a)f'(x)$ d) $(b-a)^2 f'(x)$	K2	CO1
2	3	If P_1 and P_2 are two partitions, their common refinement is given by a) $P^* = P_1 \cap P_2$ b) $P^* = P_1 \cup P_2$ c) $P^* = P_1 - P_2$ d) $P^* = P_2 - P_1$	K1	CO2
	4	The unit step function $I(x)$ is defined as a) $I(x) = 1$ for $x > 0, I(x) = 2$ for $x \leq 0$ b) $I(x) = 1$ for $x \leq 0, I(x) = -1$ for $x > 0$ c) $I(x) = 0$ for $x \leq 0, I(x) = 1$ for $x > 0$ d) $I(x) = 2$ for $x \leq 0, I(x) = -2$ for $x > 0$	K2	CO2
3	5	A sequence of functions $\{f_n\}$ to converge uniformly on a set E to a function f if for every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies _____ for all x . a) $ f_{n-2}(x) - f_{n-1}(x) \leq \epsilon^2$ b) $ f_{n-1}(x) - f_n(x) \leq \epsilon$ c) $ f_{n+1}(x) + f(x) \leq \epsilon$ d) $ f_n(x) - f(x) \leq \epsilon$	K1	CO3
	6	If B be the uniform closure of an algebra A of bounded functions then B is a _____ a) open algebra b) uniformly closed algebra c) boundary function d) identity element	K2	CO3
4	7	$\Gamma(x) =$ _____ for $0 < x < \infty$ a) $\int_0^\infty t^{2(x-1)} e^{-t} dt$ b) $\int_0^\infty t^{x-1} e^{-3t} dt$ c) $\int_0^\infty t^{2x-1} e^{-t} dt$ d) $\int_0^\infty t^{x-1} e^{-t} dt$	K1	CO4
	8	$E(2\pi i) =$ _____ a) 1 b) 2 c) 4 d) 6	K2	CO4
5	9	A set E of n vectors in X spans X if and only if E is _____ a) dependent b) independent c) closed d) open	K1	CO5
	10	If $A \in L(R^n, R^m)$ and $B \in L(R^m, R^k)$ then $\ BA\ \leq$ _____ a) $3\ B\ + 2\ A\ $ b) $3\ A\ - 2\ B\ $ c) $\ B\ \ A\ $ d) $\ B\ - \ A\ $	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Suppose f is continuous on $[a,b]$, $f'(x)$ exists at some point $x \in [a,b]$, g is defined on an interval I which contains the range of f , and g is differentiable at the point $f(x)$. If $h(t) = g(f(t))$ ($a \leq t \leq b$), then prove that h is differentiable at x , and $h'(x) = g'(f(x))f'(x)$. (OR)	K1	CO1
	11.b.	Suppose f is a real differentiable function on $[a,b]$ and suppose $f'(a) < \lambda < f'(b)$. then prove that there is a point $x \in (a,b)$ such that $f'(x) = \lambda$.		
2	12.a.	Prove that $f \in \mathcal{R}(x)$ on $[a,b]$ if and only if for every $\epsilon > 0$ there exists a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$. (OR)	K4	CO2
	12.b.	Analyze the proof of fundamental theorem of calculus.		
3	13.a.	Prove that the sequence of functions $\{f_n\}$, defined on E , converges uniformly on E if and only if for every $\epsilon > 0$ there exists an integer N such that $m \geq N, n \geq N, x \in E$ implies $ f_n(x) - f_m(x) \leq \epsilon$. (OR)	K3	CO3
	13.b.	Let α be monotonically increasing on $[a,b]$. suppose $f_n \in \mathcal{R}(\alpha)$ on $[a,b]$, for $n = 1, 2, 3, \dots$ and suppose $f_n \rightarrow f$ uniformly on $[a,b]$ then prove that $f \in \mathcal{R}(\alpha)$ on $[a,b]$ and $\int_a^b f d\alpha = \lim_{n \rightarrow \infty} \int_a^b f_n d\alpha$.		
4	14.a.	Given a double sequence $\{a_{ij}\}$, $i=1,2,3, \dots, j=1,2,3, \dots$ suppose that $\sum_{j=1}^{\infty} a_{ij} = b_i$ ($i=1,2,3, \dots$) and $\sum b_i$ converges. Then prove that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$. (OR)	K6	CO4
	14.b.	If $x > 0$, and $y > 0$, then prove that $\int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$.		
5	15.a.	Prove that a linear operator A on a finite-dimensional vector space X is one-to-one if and only if the range of A is all of X . (OR)	K5	CO5
	15.b.	If X is a complete metric space, and if \emptyset is a contraction of X into X , then prove that there exists one and only one $x \in X$ such that $\emptyset(x) = x$.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Suppose f is real function on $[a,b]$, n is a positive integer, f^{n-1} is continuous on $[a,b]$, $f^n(t)$ exists for every $t \in (a,b)$. Let α, β be distinct points of $[a,b]$, and define $P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t-\alpha)^k$ then prove that there exists a point x between such that $f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{k!} (\beta-\alpha)^k$.	K3	CO1
2	17	If γ' is continuous on $[a,b]$, then examine that γ is rectifiable, and $\Lambda(\gamma) = \int_a^b \gamma'(dt) $.	K4	CO2
3	18	If K is compact, if $f_n \in \mathcal{S}(K)$ for $n = 1, 2, 3, \dots$, and if $\{f_n\}$ is pointwise bounded and equi-continuous on K , then prove that (i) $\{f_n\}$ is uniformly bounded on K , (ii) $\{f_n\}$ contains a uniformly convergent subsequence.	K5	CO3
4	19	State and prove Parseval's theorem.	K2	CO4
5	20	Construct the proof for inverse function theorem.	K6	CO5