

**PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)**

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Branch - STATISTICS

NUMERICAL METHODS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO												
1	11.a.	Explain the procedure of Newton Raphson Method. (OR)	K2	CO1												
	11.b.	Solve the equation $x^3+x-1=0$ using the Iteration Method. Rearrange the equation suitably and find the root correct to 4 decimal places. Start with an initial guess $x_0=0.5$.														
2	12.a.	Construct the properties of forward difference operator. (OR)	K3	CO2												
	12.b.	Solve the $f(0.15)$ using Newton backward difference table from the data. <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>X</td><td>0.1</td><td>0.2</td><td>0.3</td><td>0.4</td><td>0.5</td></tr><tr><td>F(X)</td><td>0.09983</td><td>0.19867</td><td>0.29552</td><td>0.38942</td><td>0.47943</td></tr></table>			X	0.1	0.2	0.3	0.4	0.5	F(X)	0.09983	0.19867	0.29552	0.38942	0.47943
X	0.1	0.2	0.3	0.4	0.5											
F(X)	0.09983	0.19867	0.29552	0.38942	0.47943											
3	13.a.	Using Newton's forward interpolation formula, find the polynomial $f(x)$ satisfying the following data. Hence evaluate y at $x = 1985$ <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>X</td><td>1981</td><td>1901</td><td>1911</td><td>1921</td><td>1931</td></tr><tr><td>F(X)</td><td>46</td><td>66</td><td>81</td><td>93</td><td>101</td></tr></table> (OR)	X	1981	1901	1911	1921	1931	F(X)	46	66	81	93	101	K3	CO3
X	1981	1901	1911	1921	1931											
F(X)	46	66	81	93	101											
13.b.	Explain the Lagrange Interpolation formula for unequal.															
4	14.a.	Apply Newton's forward differentiation method to find solution <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>X</td><td>0.1</td><td>0.2</td><td>0.3</td><td>0.4</td><td>0.5</td></tr><tr><td>F(X)</td><td>1</td><td>0.9975</td><td>0.99</td><td>0.9776</td><td>0.860</td></tr></table> (OR)	X	0.1	0.2	0.3	0.4	0.5	F(X)	1	0.9975	0.99	0.9776	0.860	K3	CO4
X	0.1	0.2	0.3	0.4	0.5											
F(X)	1	0.9975	0.99	0.9776	0.860											
14.b.	Explain the Trapezoidal rule.															
5	15.a.	Explain the Euler's method with example. (OR)	K2	CO5												
	15.b.	Use Milne's Predictor-Corrector method with step size $h=0.1$ to estimate y_4 for $\frac{dy}{dx} = x + y$, following data. <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>x</td><td>0.0</td><td>0.1</td><td>0.2</td><td>0.3</td></tr><tr><td>y</td><td>1.0</td><td>1.11</td><td>1.26</td><td>1.43</td></tr></table> Interpret y at $x=0.4$			x	0.0	0.1	0.2	0.3	y	1.0	1.11	1.26	1.43		
x	0.0	0.1	0.2	0.3												
y	1.0	1.11	1.26	1.43												

Cont...

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO												
1	16	Identify the root of an equation $f(x)=x^3-x-1$ using False Position method.	K3	CO1												
2	17	Explain briefly the forward difference operator and its properties.	K2	CO2												
3	18	Apply the Lagrange's interpolation formula and calculate the profit in the 2000 year from the following data <table border="1" data-bbox="469 840 1065 936"> <tr> <td>Year</td> <td>1997</td> <td>1999</td> <td>2001</td> <td>2002</td> </tr> <tr> <td>Profit in Lakhs</td> <td>43</td> <td>65</td> <td>159</td> <td>248</td> </tr> </table>	Year	1997	1999	2001	2002	Profit in Lakhs	43	65	159	248	K3	CO3		
Year	1997	1999	2001	2002												
Profit in Lakhs	43	65	159	248												
4	19	Apply Simpson's 3/8 th rule from the following data. <table border="1" data-bbox="452 949 1088 1041"> <tr> <td>X</td> <td>1.4</td> <td>1.6</td> <td>1.8</td> <td>2</td> <td>2.2</td> </tr> <tr> <td>F(X)</td> <td>4.0552</td> <td>4.953</td> <td>6.0436</td> <td>7.3891</td> <td>9.025</td> </tr> </table>	X	1.4	1.6	1.8	2	2.2	F(X)	4.0552	4.953	6.0436	7.3891	9.025	K3	CO4
X	1.4	1.6	1.8	2	2.2											
F(X)	4.0552	4.953	6.0436	7.3891	9.025											
5	20	Explain the 4th order Runge-Kutta method with step size $h=0.1$ to find approximate values of y at $x=0.1$ and $x=0.2$ for the differential equation $\frac{dy}{dx} = x + y$ with initial condition $y(0)=1$.	K2	CO5												

Z-Z-Z END

