

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - STATISTICS

MATHEMATICS - I FOR STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Question No.	Question	K Level	CO
11.a.	Identify the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{pmatrix}$. (OR)	K3	CO1
11.b.	Verify that $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ satisfies its own characteristics equation and hence find A^4 .		
12.a.	Solve the equation $x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$ which has a root $2 + \sqrt{3}$. (OR)	K3	CO2
12.b.	Solve $x^3 + x^2 - 16x + 20 = 0$, the difference between two of its roots being 7.		
13.a.	If $y = ae^{mx} + be^{-mx}$, show that $\frac{d^2y}{dx^2} - m^2y = 0$. (OR)	K4	CO3
13.b.	If $u = \sin^{-1} \left(\frac{x^2+y^2}{x+y} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.		
14.a.	Find the radius of curvature for the curve $y^2 = x^3 + 8$ at $(-2, 0)$. (OR)	K5	CO4
14.b.	Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$.		
15.a.	Evaluate $\int \frac{dx}{x^2 - a^2}$. (OR)	K5	CO4
15.b.	Evaluate $\int_0^{\frac{\pi}{2}} \sin^7 x \cos^5 x dx$.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	CO
16	Examine the eigenvalues and eigenvectors of $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.	K4	CO1
17	If α, β, γ are the roots of the equation $x^3 - px^2 + qx - r = 0$, find the value of (i) $\sum \alpha^2$, (ii) $\sum \alpha^3$, (i) $\sum \alpha^2 \beta$, (i) $\sum \alpha^2 \beta^2$.	K4	CO2
18	Evaluate $\frac{\partial u}{\partial x}$ if $u = \tan^{-1} \left(\frac{x}{y} \right)$ where $x^2 + y^2 = a^2$.	K5	CO3
19	Analyze the equation of the evolute of the parabola $y^2 = 4ax$.	K4	CO4
20	Determine the reduction formula for $\int \sin^n x dx$ where n being a positive integer.	K5	CO5