

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch- STATISTICS

PROBABILITY THEORY AND RANDOM VARIABLES

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	The sample space associated with tossing two coins is (a) {H, T} (b) {HH, HT, TH, TT} (c) {H, T, H, T} (d) {HT, TH}	K1	CO1
	2	The classical definition of probability is applicable only when (a) Events are dependent (b) Outcomes are equally likely (c) Sample space is infinite (d) Outcomes are unknown	K2	CO1
2	3	A random variable is said to be discrete if it (a) Takes only integer values (b) Takes countable number of values (c) Takes uncountable values (d) None of these	K1	CO2
	4	The cumulative distribution function (CDF) of X is defined as (a) $F(x) = P(X=x)$ (b) $F(x) = P(X>x)$ (c) $F(x) = P(X \leq x)$ (d) $F(x) = P(X < x)$	K2	CO2
3	5	For two discrete random variables X and Y, the joint probability mass function is (a) $P(X=x)$ (b) $P(Y=y)$ (c) $P(X=x, Y=y)$ (d) $P(X \leq x)$	K1	CO3
	6	The conditional variance $\text{Var}(X Y)$ is (a) $E[(X - E[X Y])^2 Y]$ (b) $\text{Var}(X)/\text{Var}(Y)$ (c) $E[X Y]^2$ (d) None of these	K2	CO3
4	7	The first cumulant of a distribution is equal to (a) Mean (b) Variance (c) Skewness (d) Kurtosis	K1	CO4
	8	The probability generating function (PGF) of a discrete random variable X is defined as (a) $G_X(t) = E[t^X]$ (b) $G_X(t) = E[e^{tX}]$ (c) $G_X(t) = \log(E[e^{tX}])$ (d) $G_X(t) = e^{E[Xt]}$	K2	CO4
5	9	Bernoulli's Law of Large Numbers applies to (a) Continuous random variables (b) Bernoulli trials (c) Normal distribution (d) Exponential distribution	K1	CO5
	10	The Central Limit Theorem states that the sum of a large number of independent random variables tends to (a) Binomial distribution (b) Poisson distribution (c) Normal distribution (d) Uniform distribution	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

$(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Define probability and write the axioms of probability. (OR)	K2	CO1
	11.b.	State and prove Bayes theorem.		

Cont...

2	12.a.	Describe discrete and continuous random variables with example. (OR)	K3	CO2
	12.b.	A random variable X has probability function as follows: Values of X : -1 0 1 Probability : 0.2 0.3 0.5 Evaluate (i) $E(3X+1)$ (ii) $E(X^2)$		
3	13.a.	Define (i) Marginal Probability Distribution (ii) Conditional Probability Distribution (iii) Joint probability function (OR)	K4	CO3
	13.b.	Let $f(x, y) = \begin{cases} 8xy, & 0 < x < y < 1 \\ 0, & \text{elsewhere} \end{cases}$ Find (i) $E(Y X = x)$ (ii) $E(XY X=x)$		
4	14.a.	The probability density function of the random variable X follows the probability law: $p(x) = \frac{1}{2\theta} \exp\left(-\frac{ x - \theta }{\theta}\right), -\infty < x < \infty$ Find M.G.F of X. (OR)	K3	CO4
	14.b.	Summarize about probability generating function and cumulant generating function.		
5	15.a.	Explain the convergence in probability. (OR)	K2	CO5
	15.b.	Examine whether the weak law of large numbers holds for the sequence (X_k) of independent random variables defined as follows: $P(X_k = \pm 2^k) = 2^{-(2k+1)}, P(X_k = 0) = 1 - 2^{-2k}$		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 x 10 = 30)

Module No.	Question No.	Question	K Level	CO																
1	16	State and prove multiplication theorem of probability.	K2	CO1																
2	17	A random variable X has the following probability mass function. <table border="1" data-bbox="364 1715 1061 1820"> <tr> <td>X</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td> </tr> <tr> <td>$P(X=x)$</td><td>a</td><td>3a</td><td>5a</td><td>7a</td><td>9a</td><td>11a</td><td>13a</td> </tr> </table> (i) Find the value of 'a' (ii) Evaluate: (a) $P(X \geq 4)$ (b) $P(X < 5)$ (c) $P(3 \leq X \leq 6)$	X	0	1	2	3	4	5	6	$P(X=x)$	a	3a	5a	7a	9a	11a	13a	K3	CO2
X	0	1	2	3	4	5	6													
$P(X=x)$	a	3a	5a	7a	9a	11a	13a													
3	18	Two random variables X and Y have the following joint probability density function: $f(x, y) = \begin{cases} 2 - x - y; & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0; & \text{otherwise} \end{cases}$ Find (i) Marginal probability density functions of X and Y; (ii) Conditional density functions (iii) $\text{Var}(X)$ and $\text{Var}(Y)$	K4	CO3																
4	19	State and prove Tchebychev's inequality.	K3	CO4																
5	20	State and prove Bernoulli's weak law of large numbers.	K2	CO5																