

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch- STATISTICS

PROBABILITY THEORY AND RANDOM VARIABLES

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	The sample space associated with tossing two coins is (a) {H, T} (b) {HH, HT, TH, TT} (c) {H, T, H, T} (d) {HT, TH}	K1	CO1
	2	The classical definition of probability is applicable only when (a) Events are dependent (b) Outcomes are equally likely (c) Sample space is infinite (d) Outcomes are unknown	K2	CO1
2	3	A random variable is said to be discrete if it (a) Takes only integer values (b) Takes countable number of values (c) Takes uncountable values (d) None of these	K1	CO2
	4	The cumulative distribution function (CDF) of X is defined as (a) $F(x) = P(X=x)$ (b) $F(x) = P(X>x)$ (c) $F(x) = P(X \leq x)$ (d) $F(x) = P(X < x)$	K2	CO2
3	5	For two discrete random variables X and Y, the joint probability mass function is (a) $P(X=x)$ (b) $P(Y=y)$ (c) $P(X=x, Y=y)$ (d) $P(X \leq x)$	K1	CO3
	6	The conditional variance $\text{Var}(X Y)$ is (a) $E[(X - E[X Y])^2 Y]$ (b) $\text{Var}(X)/\text{Var}(Y)$ (c) $E[X Y]^2$ (d) None of these	K2	CO3
4	7	The first cumulant of a distribution is equal to (a) Mean (b) Variance (c) Skewness (d) Kurtosis	K1	CO4
	8	The probability generating function (PGF) of a discrete random variable X is defined as (a) $G_X(t) = E[t^X]$ (b) $G_X(t) = E[e^{tX}]$ (c) $G_X(t) = \log(E[e^{tX}])$ (d) $G_X(t) = e^{E[Xt]}$	K2	CO4
5	9	Bernoulli's Law of Large Numbers applies to (a) Continuous random variables (b) Bernoulli trials (c) Normal distribution (d) Exponential distribution	K1	CO5
	10	The Central Limit Theorem states that the sum of a large number of independent random variables tends to (a) Binomial distribution (b) Poisson distribution (c) Normal distribution (d) Uniform distribution	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

$(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Define probability and write the axioms of probability. (OR)	K2	CO1
	11.b.	State and prove Bayes theorem.		

Cont...

2	12.a.	Describe discrete and continuous random variables with example. (OR)	K3	CO2
	12.b.	A random variable X has probability function as follows: Values of X : -1 0 1 Probability : 0.2 0.3 0.5 Evaluate (i) $E(3X+1)$ (ii) $E(X^2)$		
3	13.a.	Define (i) Marginal Probability Distribution (ii) Conditional Probability Distribution (iii) Joint probability function (OR)	K4	CO3
	13.b.	Let $f(x, y) = \begin{cases} 8xy, & 0 < x < y < 1 \\ 0, & \text{elsewhere} \end{cases}$ Find (i) $E(Y X = x)$ (ii) $E(XY X=x)$		
4	14.a.	The probability density function of the random variable X follows the probability law: $p(x) = \frac{1}{2\theta} \exp\left(-\frac{ x - \theta }{\theta}\right), -\infty < x < \infty$ Find M.G.F of X. (OR)	K3	CO4
	14.b.	Summarize about probability generating function and cumulant generating function.		
5	15.a.	Explain the convergence in probability. (OR)	K2	CO5
	15.b.	Examine whether the weak law of large numbers holds for the sequence (X_k) of independent random variables defined as follows: $P(X_k = \pm 2^k) = 2^{-(2k+1)}, P(X_k = 0) = 1 - 2^{-2k}$		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 x 10 = 30)

Module No.	Question No.	Question	K Level	CO																
1	16	State and prove multiplication theorem of probability.	K2	CO1																
2	17	A random variable X has the following probability mass function. <table border="1" data-bbox="364 1715 1061 1820"> <tr> <td>X</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td> </tr> <tr> <td>$P(X=x)$</td><td>a</td><td>3a</td><td>5a</td><td>7a</td><td>9a</td><td>11a</td><td>13a</td> </tr> </table> (i) Find the value of 'a' (ii) Evaluate: (a) $P(X \geq 4)$ (b) $P(X < 5)$ (c) $P(3 \leq X \leq 6)$	X	0	1	2	3	4	5	6	$P(X=x)$	a	3a	5a	7a	9a	11a	13a	K3	CO2
X	0	1	2	3	4	5	6													
$P(X=x)$	a	3a	5a	7a	9a	11a	13a													
3	18	Two random variables X and Y have the following joint probability density function: $f(x, y) = \begin{cases} 2 - x - y; & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0; & \text{otherwise} \end{cases}$ Find (i) Marginal probability density functions of X and Y; (ii) Conditional density functions (iii) $\text{Var}(X)$ and $\text{Var}(Y)$	K4	CO3																
4	19	State and prove Tchebychev's inequality.	K3	CO4																
5	20	State and prove Bernoulli's weak law of large numbers.	K2	CO5																

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – STATISTICS

MATHEMATICS -I FOR STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1.	Which of the following is a reciprocal equation? a) $x^4+2x^3+3x^2+2x+1=0$ b) $x^4+3x^2+2x+1=0$ c) $x^4-2x^3+3x^2+2x+1=0$ d) $x^4+2x^3+3x^2+2x=0$	K1	CO1
	2	If the roots of an equation are increased by h, the transformed equation is a) $f(x+h)=0$ b) $f(x-h)=0$ c) $f(h-x)=0$ d) $f(x)+h=0$	K2	CO1
2	3	Find the value of $\lim_{x \rightarrow 0} \frac{\sin x}{x}$. a) 0 b) 1 c) 2 d) infinity	K1	CO2
	4	Find the derivative of $\ln(\sin x)$. a) $\cot x$ b) $\cosec x$ c) $\sec x$ d) $-\cot x$	K2	CO2
3	5	The function $f(x)=x^2$ has a) Maximum at $x=0$ b) Minimum at $x=0$ c) Both Maximum and Minimum d) None	K1	CO3
	6	The minimum of $f(x,y)=x^2+y^2$ subject to the condition $x+y=1$ is at a) $(0,0)$ b) $(1/2, 1/2)$ c) $(0,1)$ d) $(1,0)$	K2	CO3
4	7	If $f(r) = r^2$ where $r = \sqrt{x^2 + y^2 + z^2}$ then $\nabla f = ?$ a) $(2x, 2y, 2z)$ b) (x, y, z) c) (r^2, r^2, r^2) d) $(0,0,0)$	K1	CO4
	8	Which of the function is always a scalar? a) gradient b) curl c) divergence d) vector potential	K2	CO4
5	9	Verify the differential equation: $(2xy + 3)dx + (x^2 + 4y)dy = 0$ is a) Exact b) Not-Exact c) Homogeneous d) Linear	K1	CO5
	10	Using Bernoulli's Equation, if $\frac{dy}{dx} + y = xy^2$ where $v=y^{-1}$. Then the resulting linear equation is a) $\frac{dv}{dx} + v = -x$ b) $\frac{dv}{dx} - v = -x$ c) $\frac{dv}{dx} = v - x$ d) $\frac{dv}{dx} = -x$	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Solve the equation $x^4 - 14x^3 + 46x^2 - 42x + 9 = 0$ given that $5 - \sqrt{22}$ is a root.	K2	CO2
		(OR)		
	11.b.	Increase the roots of the equation $4x^5 - 2x^3 + 7x - 3 = 0$ by 2.		
2	12.a.	State and Prove Rolle's Theorem.	K3	CO3
		(OR)		
	12.b.	State and Prove Lagrange's first mean value theorem.		
3	13.a.	Prove that $u = x^3 + y^3 - 3axy$ is max or min at $x = y = a$ according as negative or positive.	K4	CO4
		(OR)		
	13.b.	Find the shortest distance from the point $(1, 0)$ to the parabola $y^2 = 4x$.		
4	14.a.	If $\nabla \varphi = 2xyz^3i + x^2z^3j + 3x^2yz^2k$ then find $\varphi(x, y, z)$ and show that $\varphi(1, -2, 2) = 4$.	K4	CO4
		(OR)		
	14.b.	Find the unit normal to the surface $x = t, y = t^2, z = t^3$ at $t = 1$.		
5	15.a.	Solve $\frac{dy}{dx} = \frac{y^3 + 3x^2y}{x^3 + 3xy^2}$.	K5	CO5
		(OR)		
	15.b.	Solve $xyp^2 + p(3x^2 - 2y^2) - 6xy = 0$.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Solve $6x^4 - 25x^3 + 37x^2 - 25x + 6 = 0$.	K3	CO2
2	17	State and Prove Cauchy's Mean value theorem.	K4	CO2
3	18	Prove that the rectangular solid of maximum volume which can be inscribed in a given sphere is a cube.	K4	CO3
4	19	Prove that $\nabla^2(r^n r) = n(n+3)r^{n-2}r$.	K4	CO4
5	20	Solve $4y = x^2 + p^2$.	K4	CO5

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - STATISTICS

MATHEMATICS - I FOR STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Question No.	Question	K Level	CO
11.a.	Identify the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{pmatrix}$. (OR)	K3	CO1
11.b.	Verify that $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ satisfies its own characteristics equation and hence find A^4 .		
12.a.	Solve the equation $x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$ which has a root $2 + \sqrt{3}$. (OR)	K3	CO2
12.b.	Solve $x^3 + x^2 - 16x + 20 = 0$, the difference between two of its roots being 7.		
13.a.	If $y = ae^{mx} + be^{-mx}$, show that $\frac{d^2y}{dx^2} - m^2y = 0$. (OR)	K4	CO3
13.b.	If $u = \sin^{-1} \left(\frac{x^2+y^2}{x+y} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.		
14.a.	Find the radius of curvature for the curve $y^2 = x^3 + 8$ at $(-2, 0)$. (OR)	K5	CO4
14.b.	Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$.		
15.a.	Evaluate $\int \frac{dx}{x^2 - a^2}$. (OR)	K5	CO4
15.b.	Evaluate $\int_0^{\frac{\pi}{2}} \sin^7 x \cos^5 x dx$.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	CO
16	Examine the eigenvalues and eigenvectors of $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.	K4	CO1
17	If α, β, γ are the roots of the equation $x^3 - px^2 + qx - r = 0$, find the value of (i) $\sum \alpha^2$, (ii) $\sum \alpha^3$, (i) $\sum \alpha^2 \beta$, (i) $\sum \alpha^2 \beta^2$.	K4	CO2
18	Evaluate $\frac{\partial u}{\partial x}$ if $u = \tan^{-1} \left(\frac{x}{y} \right)$ where $x^2 + y^2 = a^2$.	K5	CO3
19	Analyze the equation of the evolute of the parabola $y^2 = 4ax$.	K4	CO4
20	Determine the reduction formula for $\int \sin^n x dx$ where n being a positive integer.	K5	CO5

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Branch – STATISTICS

MATHEMATICS - II FOR STATISTICS / MATHEMATICS – II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	The value of $f(0)$ if $f(x) = x \sin \frac{1}{x}$ is _____. a) 1 b) -1 c) 0 d) ∞	K1	CO1
	2	_____ is an even function. a) $\cos x$ b) e^x c) e^{-x} d) e^{2x}	K2	CO3
2	3	The complete integral for the equation $z = px + qy + \left(\frac{q}{p} - p\right)$ is _____. a) $z = ax - by - \frac{b}{a} + a$ b) $z = ax + by + \frac{b}{a} - a$ c) $z = ax + by$ d) $\frac{b}{a} - a$	K1	CO3
	4	The solution for $\frac{\partial^2 z}{\partial x^2} = \sin y$ is _____. a) $z = x \sin y + xf(y) + \phi(y)$ b) $z = x \cos y + x + \phi(y)$ c) $z = -x \cos y + f(y) + \phi(y)$ d) $z = \frac{x^2}{2} \sin y + xf(y) + \phi(y)$	K2	CO1
3	5	$L[e^{-7t}] =$ _____. a) $\frac{1}{s+7}$ b) $\frac{1}{s-7}$ c) $\frac{1}{s^2+7}$ d) $\frac{1}{s^2-7}$	K1	CO1
	6	$L(t^3) =$ _____. a) $\frac{1}{s^4}$ b) $\frac{6}{s^4}$ c) $-\frac{1}{s^4}$ d) $\frac{7}{s^4}$	K2	CO1
4	7	If $f = 1$, $g = e^t$ then f^*g is _____. a) $e^t - 1$ b) e^t c) e^{-t} d) $e^{-t} - 1$	K1	CO3
	8	$L^{-1}\left[\frac{s+6}{(s+6)^2+9}\right]$ is _____. a) $e^{6t} \cos 3t$ b) $e^{-6t} \sin 3t$ c) $e^{-6t} \cos 3t$ d) $e^{6t} \sin 3t$	K2	CO3
5	9	_____ is a direct method based on the elimination of the unknowns, one by one. a) Gauss elimination method b) Numerical method c) Cramer's method d) Gauss jordon method	K1	CO3
	10	In an indirect or iterative method, the amount of computation depends on the _____ required. a) degree of accuracy b) coefficient c) approximation d) convergency	K2	CO3

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Prove that for $-\pi < x < \pi$, $\frac{x(\pi^2 - x^2)}{12} = \frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \dots$	K2	CO4

(OR)

Cont...

	11.b.	Find a half-range sine series which represents $f(x) = \sin px$ for p not an integer on the interval $0 < x < \pi$.		
2	12.a.	Find the differential equation of all spheres of the radius 'c' having their centres on the yz -plane. (OR)	K2	CO2
	12.b.	Solve $ap + bq + cz = 0$.		
3	13.a.	Find $L[\sin^2 t \cos^3 t]$. (OR)	K3	CO4
	13.b.	Find $L\left[\int_0^t \frac{e^{-t} \sin t}{t} dt\right]$.		
4	14.a.	Find $L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right]$ using convolution theorem. (OR)	K3	CO2
	14.b.	Find $L^{-1}\left[\log \frac{s^2+a^2}{s^2-b^2}\right]$.		
5	15.a.	Solve by Gauss-Jordon method the equations $2x + y + 4z = 12$ $8x - 3y + 2z = 20$ $4x + 11y - z = 33$. (OR)	K2	CO4
	15.b.	Solve by Gauss elimination procedure, the equations $3.15x - 1.96y + 3.85z = 12.95$ $2.13x + 5.12y - 2.89z = -8.61$ $5.92x + 3.05y + 2.15z = 6.88$.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Expand $f(x) = (\pi - x)^2$ in $(-\pi, \pi)$ as a fourier series.	K3	CO4
2	17	Solve $(x^2 - y^2 - z^2)p + 2xyq - 2xz = 0$.	K3	CO5
3	18	(i) Find $L[e^{-3t} \sin^2 t]$ (ii) Find $L[\cos^3 3t]$.	K3	CO4
4	19	Use laplace transform to solve $(D^2 + 5D + 6)x = e^{-t}$ given that $x(0) = \frac{15}{2}$; $x'(0) = \frac{37}{2}$.	K3	CO5
5	20	Solve by Gauss-Jacobi method of iteration the equations $27x + 6y - z = 85$ $6x + 15y + 2z = 72$ $x + y + 54z = 110$.	K3	CO4

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch – STATISTICS

PROBABILITY DISTRIBUTIONS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer **ALL** questions

ALL questions carry **EQUAL** marks $(10 \times 1 = 10)$

Question No.	Questions	K Level	CO
1	Which distribution is a generalization of the Binomial distribution? a) Poisson Distribution b) Geometric Distribution c) Negative Binomial Distribution d) Bernoulli Distribution	K2	CO1
2	The moment generating function for which distribution is $e^{p(et-1)}$? a) Binomial Distribution b) Poisson Distribution c) Normal Distribution d) Beta Distribution	K2	CO2
3	The normal probability curve is also known as: a) Bell Curve b) Exponential Curve c) Rectangular Curve d) Gamma Curve	K2	CO1
4	Which distribution only takes integer values? a) Normal b) Multinomial c) Beta d) Gamma	K2	CO3
5	Which of the following is a continuous distribution? a) Binomial b) Poisson c) Normal d) Geometric	K2	CO1
6	Beta distribution is defined on the interval: a) $(0, \infty)$ b) $(-\infty, \infty)$ c) $(0,1)$ d) $(-\infty,0)$	K2	CO1
7	The mean and variance of the Poisson distribution are: a) Mean = Variance = λ b) Mean = Variance = np c) Mean = p , Variance = $np(1-p)$ d) Mean = np , Variance = λ	K1	CO3
8	Which is NOT a property of the exponential distribution? a) Memoryless property b) Defined for $x < 0$ c) Mean = $1/\lambda$ d) Variance = $1/\lambda^2$	K2	CO3
9	Student's t-distribution is used for: a) Large sample inference b) Small sample inference c) non-parametric tests d) Population mean estimation only	K1	CO5
10	Which distribution models the number of failures before a success? a) Binomial b) Poisson c) Geometric d) Normal	K2	CO1

SECTION - B (35 Marks)

Answer **ALL** questions

ALL questions carry **EQUAL** Marks $(5 \times 7 = 35)$

Question No.	Question	K Level	CO
11.a.	Derive the moment generating function for the Binomial distribution.	K2	CO1
	(OR)		
11.b.	Derive recurrence relation for the moments of Poisson distribution.		

Cont...

12.a.	Find the mean and variance of Negative Binomial distribution. (OR)	K2	CO2
12.b.	State the importance properties of the Hypergeometric distribution.	K4	CO2
13.a.	Derive the characteristic function of the Normal distribution. (OR)	K2	CO3
13.b.	Find the mean deviation about the mean for the Rectangular distribution.	K3	CO3
14.a.	Define Exponential distribution and its derive Mean and Variance. (OR)	K2	CO4
14.b.	Derive the moments of Beta distribution of first and second kind.		
15.a.	State applications of Student's t and Chi-Square distributions in sampling. (OR)	K2	CO5
15.b.	Discuss the relationship between F and Chi-square distributions.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Question No.	Question	K Level	CO
16	Derive the constants of the Normal distribution. Also, state its properties.	K4	CO1
17	Show that Poisson distribution is a limiting form of the Binomial distribution.	K2	CO2
18	Derive Mean and Variance of Rectangular distribution and its properties.	K3	CO3
19	Derive Mean and Variance of Gamma distribution and its properties.	K2	CO4
20	Establish the relationship between t and Chi-Square distributions.	K2	CO5

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fourth Semester)

Branch - STATISTICS

STATISTICAL INFERENCE - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	If an estimator converges in probability to the true parameter value, it is called (a) Efficient (b) Consistent (c) Unbiased (d) Minimum variance	K1	CO1
	2	The variance of any unbiased estimator cannot be less than (a) Sample variance (b) Fisher Information (c) Cramér–Rao lower bound (d) Expectation value	K2	CO1
2	3	The Neyman–Fisher Factorization Theorem provides a criterion for (a) Consistency (b) Sufficiency (c) Unbiasedness (d) Efficiency	K1	CO2
	4	The Rao–Blackwell Theorem is used to (a) Improve an estimator using a sufficient statistic (b) Find CR bound (c) Test efficiency (d) Estimate bias	K2	CO2
3	5	MLEs are generally (a) Biased but consistent (b) Unbiased but inefficient (c) Both unbiased and efficient (d) None of these	K1	CO3
	6	The minimum chi-square method minimizes (a) $\Sigma(O-E)^2/E$ (b) $\Sigma(E-O)^2$ (c) $\Sigma(O/E)$ (d) $\Sigma E/O$	K2	CO3
4	7	The Bayesian estimator uses (a) Only sample data (b) Prior and posterior distributions (c) Only likelihood (d) CR inequality	K1	CO4
	8	The posterior distribution is proportional to (a) Likelihood × Prior (b) Likelihood / Prior (c) Prior / Likelihood (d) None of these	K2	CO4
5	9	The sign test is based on (a) Number of positive and negative differences (b) Ranks of observations (c) Variance of differences (d) Chi-square	K1	CO5
	10	The χ^2 test for goodness of fit compares (a) Means (b) Observed and expected frequencies (c) Variances (d) Medians	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	State and interpret the Cramér–Rao Inequality. (OR)	K2	CO1
	11.b.	What is a minimum variance bound estimator (MVBE)?		
2	12.a.	State Neyman's Factorization Theorem. (OR)	K3	CO2
	12.b.	Explain the idea of Rao–Blackwellization.		
3	13.a.	List the properties of MLEs (OR)	K4	CO3
	13.b.	Differentiate between minimum and modified minimum chi-square estimators.		
4	14.a.	Explain the concept of prior and posterior in Bayesian estimation. (OR)	K5	CO4
	14.b.	Explain about the level of confidence?		
5	15.a.	Explain the purpose of the Wilcoxon signed rank test. (OR)	K5	CO5
	15.b.	Explain the procedure of run test.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Given a random sample from $N(\mu, \sigma^2)$, find the unbiased estimator of μ and verify if it attains the CR bound.	K5	CO1
2	17	State and prove the Rao–Blackwell theorem, and explain its importance in obtaining MVUEs.	K3	CO2
3	18	Compare the method of moments and maximum likelihood method in terms of bias and efficiency.	K3	CO3
4	19	Explain the concept of Bayesian estimation with a simple illustration.	K2	CO4
5	20	Explain the procedure for the χ^2 test for goodness of fit and its interpretation.	K5	CO5

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)
BSc DEGREE EXAMINATION DECEMBER 2025
(Fourth Semester)
Branch - STATISTICS
BASIC SAMPLING THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)
Answer ALL questions
ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	The entire collection of items or individuals under study is called _____. a) Sample b) Population c) Census d) Attribute	K1	CO1
	2	CSO differs from NSSO mainly because: a) CSO collects rainfall data b) CSO prepares national income and accounts statistics c) CSO conducts household surveys d) CSO manages census operations	K2	CO1
2	3	The unbiased estimator of the population total under SRS is _____. a) $N\bar{y}$ b) $n\bar{y}$ c) $\frac{\bar{y}}{N}$ d) $\frac{N}{n}\bar{y}$	K1	CO2
	4	The effect of the finite population correction factor is _____. a) To increase the variance estimate when sampling fraction is large b) To reduce the variance estimate when sampling fraction is large c) To have no effect on the variance estimate d) To make the estimator biased	K2	CO2
3	5	In optimum allocation, the number of samples drawn from the h^{th} stratum is proportional to _____. a) N_h b) $N_h S_h$ c) $\sqrt{N_h}$ d) S_h^2	K1	CO3
	6	The main advantage of optimum allocation over proportional allocation is _____. a) It minimizes the cost of sampling b) It minimizes the variance of the stratified mean for a fixed n c) It requires less population information d) It is easier to implement always	K2	CO3
4	7	A key requirement for applying systematic sampling is that _____. a) The population must be ordered in some way b) The sample size must be very large c) Stratification must be possible d) Clusters must be defined	K1	CO4
	8	Circular systematic sampling is preferred when _____. a) The population has a circular or cyclical structure b) The population has no ordering c) Stratified sampling is impossible d) Clusters are not available	K2	CO4
5	9	The regression coefficient used in regression estimator is estimated from _____. a) Population means b) Sample data c) Auxiliary variable variance alone d) Random numbers	K1	CO5
	10	The variance of the regression estimator compared to the mean per unit estimator is smaller when a) The correlation coefficient between X and Y is high b) The correlation coefficient is low c) The auxiliary variable has no relation with study variable d) The auxiliary variable mean is unknown	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	What are the principles of sample survey? (OR)	K2	CO1
	11.b.	Explain the sampling and non-sampling errors.		
2	12.a.	Show that the SRSWOR the sample mean square is an unbiased estimate of the population mean square. (OR)	K3	CO2
	12.b.	Explain the simple random sampling for attributes.		
3	13.a.	What are the advantages of stratified random sampling? (OR)	K2	CO3
	13.b.	Show that $Var(\bar{y}_{st})$ is minimum for fixed total size of the sample if $n_i \propto N_i S_i$.		
4	14.a.	Prove that systematic sampling gives more precise than SRSWOR if $S_{wsys}^2 \geq S^2$. (OR)	K3	CO4
	14.b.	State the advantages and disadvantages of systematic sampling.		
5	15.a.	Show that first approximation to the bias of the ratio estimators (R) is given by $B(R) = \frac{-Cov(\bar{x}, \hat{R})}{\bar{X}}$. (OR)	K3	CO5
	15.b.	Explain the bias of regression estimator.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Explain the advantages of sampling over complete enumeration.	K5	CO1
2	17	Derive the simple random sampling without replacement the variance of the sample mean is $v(\bar{y}) = \frac{N-n}{N} \frac{s^2}{n}$.	K3	CO2
3	18	Describe the allocation of sample to different strata.	K6	CO3
4	19	If the population consists of linear trend, then prove that $Var(\bar{y}_{st}) \leq Var(\bar{y}_{sys}) \leq Var(\bar{y}_n)_R$.	K4	CO4
5	20	Derive the first approximation to the relative bias of the ratio estimator.	K4	CO5

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fifth Semester)

Branch – STATISTICS

STATISTICAL INFERENCE – II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	A hypothesis which is tested for possible rejection under the assumption that it is true is called (a) Alternative hypothesis (b) Null hypothesis (c) Simple hypothesis (d) Composite hypothesis	K1	CO1
	2	The Neyman–Pearson lemma provides a method for finding (a) Unbiased tests (b) Most powerful tests (c) Non-parametric tests (d) Asymptotic tests	K2	CO1
2	3	A test that maximizes the power among all tests of the same size is called a _____ test. (a) Likelihood Ratio (b) Uniformly Most Powerful (c) Chi-square (d) Asymptotic	K1	CO2
	4	The Likelihood Ratio (LR) test is based on the ratio of (a) Sample mean to sample variance (b) Maximum likelihood under null and alternative hypotheses (c) Variance to mean (d) Confidence limits	K2	CO2
3	5	The Student's t-test is applicable when _____ is unknown. (a) Mean (b) Population variance (c) Population mean (d) Sample variance	K1	CO3
	6	6. The level of significance is denoted by (a) β (b) α (c) μ (d) σ	K2	CO3
4	7	The F-test is used for testing (a) Equality of two means (b) Equality of two proportions (c) Equality of variances (d) Independence of attributes	K1	CO4
	8	The chi-square test is mainly used for (a) Estimation of parameters (b) Testing independence or goodness of fit (c) Comparing means (d) Finding regression lines	K2	CO4
5	9	A contingency table is used to study (a) Regression (b) Correlation (c) Association between attributes (d) Distribution fitting	K1	CO5
	10	Yule's coefficient of association ranges between (a) 0 and 1 (b) -1 and 1 (c) 0 and ∞ (d) $-\infty$ and ∞	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Explain the fundamental concepts of hypothesis testing and the Neyman-Pearson approach. (OR)	K2 K3	CO1
	11.b.	Describe the properties of unbiased tests with simple examples.		
2	12.a.	Explain the Likelihood Ratio Test for testing the mean of a normal population. (OR)	K2 K3	CO2
	12.b.	Describe the procedure for obtaining the Uniformly Most Powerful (UMP) test with an example.		
3	13.a.	Explain the concept of tests of significance for proportions and means. (OR)	K2 K3	CO3
	13.b.	Derive the test statistic for correlation coefficient based on Student's t-distribution.		
4	14.a.	Describe the procedure for testing the equality of several variances using the F-test. (OR)	K3 K2	CO4
	14.b.	Explain the chi-square test for testing the independence of two attributes with an example.		
5	15.a.	Explain the construction and interpretation of a 2×2 contingency table. (OR)	K2 K3	CO5
	15.b.	Describe the computation of Yule's coefficient of association and coefficient of colligation.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	State and prove the Neyman-Pearson Fundamental Lemma. Discuss its role in developing most powerful tests.	K5	CO1
2	17	Derive the Likelihood Ratio Test (LRT) for testing the mean and variance of a normal population for both one-sample and two-sample cases.	K3	CO2
3	18	Explain in detail the large-sample tests for proportions, means, standard deviations, and correlation coefficients with examples.	K2	CO3
4	19	Describe the exact sampling distributions – F and Chi-square. Explain their applications in testing homogeneity of variances and correlation coefficients.	K4	CO4
5	20	Discuss the concept of association of attributes. Derive and explain Yule's coefficient of association and coefficient of colligation with examples.	K6	CO5

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fifth Semester)

Branch - STATISTICS

EDUCATIONAL & PSYCHOLOGICAL STATISTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Question No.	Question	K Level	CO
1	What is the point biserial correlation used for? a) For continuous variables b) For categorical variables c) For one continuous and one dichotomous variable d) For two dichotomous variables	K2	CO1
2	Tetrachoric correlation is often used for: a) Ordinal data b) Dichotomous data c) Continuous data d) Interval data	K2	CO1
3	Which score is considered a standard score? a) T score b) Z score c) Both a and b d) None of the above	K2	CO2
4	What does a T score of 50 represent? a) The score is at the average level b) The score is a raw score c) The score is above average d) The score is below average	K2	CO2
5	The primary function of judgment scaling is: a) To compare the validity of different tests b) To assess the reliability of test items c) To measure test difficulty d) To assign numerical values to subjective evaluations	K2	CO3
6	What type of data is best suited for the C scale? a) Ordinal data b) Continuous data c) Dichotomous data d) Dichotomous data	K2	CO3
7	Which method of reliability assessment involves administering the same test to the same group twice? a) Split-half method b) Test-retest method c) Parallel form method d) Rational equivalence	K1	CO4
8	How does lengthening a test affect its reliability? a) It decreases reliability b) It does not affect reliability c) It improves reliability d) It makes the test more difficult	K2	CO4
9	Which method of validity assessment is used when comparing the results of the same test at two different times? a) Test-retest validity b) Concurrent validity c) Predictive validity d) Content validity	K1	CO5
10	What does a significant validity coefficient suggest? a) The test is reliable b) The test is measuring c) The test has a low error rate d) The test has a normal distribution	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

(5 × 7 = 35)

Question No.	Question	K Level	CO
11.a.	State the assumptions and limits of Biserial Correlation. (OR)	K2	CO1
11.b.	Describe the need and importance of Partial correlations with examples.	K2	CO1
12.a.	What is the role of the Stannine scale in rating performance? (OR)	K2	CO2

Cont...

12.b.	In the sub-tests of an entrance test, Kaarthika scored 56 in spelling test, 72 in reasoning test, and 38 in arithmetic test. The mean and the SD of these sub-tests were as follows.	<table border="1"> <thead> <tr> <th>Test</th><th>Spelling</th><th>Reasoning</th><th>Arithmetic</th></tr> </thead> <tbody> <tr> <td>M</td><td>50</td><td>66</td><td>30</td></tr> <tr> <td>σ</td><td>8</td><td>12</td><td>10</td></tr> </tbody> </table>	Test	Spelling	Reasoning	Arithmetic	M	50	66	30	σ	8	12	10	K4	CO3
Test	Spelling	Reasoning	Arithmetic													
M	50	66	30													
σ	8	12	10													
13.a.	Assuming the distribution of these sub-tests as normal, find out in which sub-test Kaarthika performed better than the other two.		K2	CO3												
	(OR)															
13.b.	Discuss the difference between rating scales and ranking scale		K3	CO3												
14.a.	Explain the concept of internal consistency reliability.		K2	CO4												
	(OR)															
14.b.	What is the relationship between test length and reliability? Explain why longer tests tend to have higher reliability.		K2	CO4												
15.a.	Discuss face validity and its role in test development.		K2	CO5												
	(OR)															
15.b.	Explain criterion-related validity and how it is used in the context of test development.		K2	CO5												

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	CO																														
16	<p>The following tables shows that the distribution of the scores on an achievement test earned by two groups of students those who passed and those who failed in a test of Arithmetic. Compute the coefficient of biserial correlation.</p> <table border="1"> <thead> <tr> <th>Achievement Score Range</th> <th>Passed</th> <th>Failed</th> </tr> </thead> <tbody> <tr> <td>185–194</td> <td>7</td> <td>0</td> </tr> <tr> <td>175–184</td> <td>10</td> <td>0</td> </tr> <tr> <td>165–174</td> <td>16</td> <td>0</td> </tr> <tr> <td>155–164</td> <td>24</td> <td>6</td> </tr> <tr> <td>145–154</td> <td>35</td> <td>15</td> </tr> <tr> <td>135–144</td> <td>40</td> <td>26</td> </tr> <tr> <td>125–134</td> <td>26</td> <td>13</td> </tr> <tr> <td>115–124</td> <td>13</td> <td>5</td> </tr> <tr> <td>105–114</td> <td>5</td> <td>0</td> </tr> </tbody> </table>	Achievement Score Range	Passed	Failed	185–194	7	0	175–184	10	0	165–174	16	0	155–164	24	6	145–154	35	15	135–144	40	26	125–134	26	13	115–124	13	5	105–114	5	0	K4	CO1
Achievement Score Range	Passed	Failed																															
185–194	7	0																															
175–184	10	0																															
165–174	16	0																															
155–164	24	6																															
145–154	35	15																															
135–144	40	26																															
125–134	26	13																															
115–124	13	5																															
105–114	5	0																															
17	Discuss the methods for calculating T-scores for grouped and ungrouped data. Provide a detailed example.	K2	CO2																														
18	What is the relationship between judgment scaling and the normal distribution? Explain how judgment scaling utilizes the normal curve.	K3	CO3																														
19	Discuss the different methods for assessing the reliability of a test, including test-retest, split-half, and parallel forms. Provide examples of when each method should be used.	K2	CO4																														
20	Explain the importance of construct validity. How can researchers assess whether a test truly measures the construct it is intended to measure?	K3	CO5																														