

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch - PHYSICS

ELECTRICITY AND MAGNETISM

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	Gauss's law states that: a) The total magnetic flux through a closed surface is zero b) The total electric flux through a closed surface is equal to the charge enclosed divided by ϵ c) The electric field is proportional to charge density d) None of these	K1	CO1
	2	When a dielectric is placed in an external electric field, the field inside it becomes a) Stronger than external field b) Weaker than external field c) Same as external field d) Zero	K2	CO1
2	3	Electric current is defined as a) Rate of change of voltage b) Rate of flow of charge c) Charge per unit voltage d) Charge per unit resistance	K1	CO2
	4	The Carey Foster bridge is mainly used to: a) Compare two EMFs b) Measure very low resistance c) Measure inductance d) Measure capacitance	K2	CO2
3	5	Ionic mobility is defined as a) Velocity of an ion under unit potential gradient b) Charge per ion c) Distance moved per unit charge d) Product of charge and velocity	K1	CO3
	6	Peltier coefficient (π) is defined as a) Heat absorbed or evolved per coulomb of charge at a junction b) emf developed per degree temperature difference c) Work done per mole d) Charge per unit mass	K2	CO3
4	7	If the peak value of an alternating current is I_m , its RMS value is a) I_m b) $\frac{I_m}{2}$ c) $\frac{I_m}{\sqrt{2}}$ d) $\frac{I_m}{\sqrt{3}}$	K1	CO4
	8	In a parallel resonant circuit, at resonance the current a) Is minimum b) Is maximum c) Depends only on resistance d) Becomes zero	K2	CO4
5	9	Diamagnetic substances have a) Positive susceptibility b) Negative susceptibility c) Zero susceptibility d) Very high susceptibility	K1	CO5
	10	According to Langevin's theory, diamagnetism arises due to a) Permanent magnetic dipoles b) Orbital motion of electrons creating small opposing fields c) Alignment of dipoles in field direction d) Presence of unpaired electrons	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	State Gauss's law in integral and differential forms. (OR)	K2	CO1
	11.b.	Define dielectric constant K and electric susceptibility χ_e , and write the relation between them.		
2	12.a.	Define current density and explain the equation of continuity for steady current. (OR)	K3	CO2
	12.b.	State Ohm's law in microscopic form and calculate the electrical conductivity of a material given current, area, and potential difference.		
3	13.a.	Calculate the transport number of ions in an electrolyte given the ionic velocities and the total current. Discuss the significance of transport numbers in electrolysis. (OR)	K4	CO3
	13.b.	Calculate the heat absorbed or evolved per unit charge in a conductor exhibiting the Thomson effect and explain its significance.		
4	14.a.	Apply the J-operator method to determine the current in a series RLC circuit driven by an AC voltage. (OR)	K4	CO4
	14.b.	Determine the decay constant for current in a CR circuit and analyze its effect on voltage across the resistor.		
5	15.a.	Classify materials as diamagnetic, paramagnetic, and ferromagnetic, and give examples of each. (OR)	K3	CO5
	15.b.	State Ampere's circuital law and apply it to find the magnetic field around a long straight current-carrying conductor.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Explain the concept of electric potential. Show that the electric field is equal to the negative gradient of the electric potential and describe the significance of this relation.	K4	CO1
2	17	Solve a Carey-Foster bridge problem to determine an unknown resistance from measured deflection readings.	K4	CO2
3	18	Calculate the thermo emf of a thermocouple using the Seebeck coefficients of its metals and determine the temperature at which the thermo emf becomes zero.	K4	CO3
4	19	Analyze a parallel resonance circuit and calculate the resonant frequency, current, and voltage across the branches.	K4	CO4
5	20	Discuss the domain theory of ferromagnetism and analyze how it explains saturation magnetization.	K4	CO5