

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Branch- PHYSICS

THERMAL AND STATISTICAL PHYSICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	The thermometer works on the principle of: a) Thermal equilibrium b) Expansion of substances with temperature c) Conduction of heat d) Specific heat capacity	K1	CO1
	2	The SI unit of temperature is _____ a) °C b) °F c) J d) K	K2	CO1
2	3	The temperature above which a gas cannot be liquefied, however high the pressure applied, is called _____ a) Inversion temperature b) Boyle temperature c) Critical temperature d) Transition temperature	K1	CO2
	4	For a real gas, Joule–Thomson coefficient is positive when the gas _____ a) cools on expansion b) heats on expansion c) temperature remains constant d) behaves ideally	K2	CO2
3	5	The SI unit of thermal conductivity is _____ a) $J \cdot m^{-1} \cdot s^{-1} \cdot K^{-1}$ b) $W \cdot m \cdot K^{-1}$ c) $J \cdot s^{-1} \cdot m^{-2} \cdot K^{-1}$ d) $W \cdot m^{-1} \cdot K^{-1}$	K1	CO3
	6	Stefan's law is expressed as _____ a) $E = \sigma T^2$ b) $E = \sigma T^3$ c) $E = \sigma T^4$ d) $E = \sigma KT$	K2	CO3
4	7	The first law of thermodynamics is a statement of Conservation of _____ a) mass b) energy c) momentum d) temperature	K1	CO4
	8	The efficiency of a Carnot engine is _____ a) $\eta = 1 - \frac{T_1}{T_2}$ b) $\eta = \frac{T_1}{T_2}$ c) $\eta = 1 - \frac{T_2}{T_1}$ d) $\eta = \frac{T_2}{T_1}$	K2	CO4
5	9	The Maxwell-Boltzmann statistics is applicable to _____ a) Indistinguishable particles with half-integer spin b) Indistinguishable particles with integer spin c) Distinguishable classical particles d) Electrons in metals	K1	CO5
5	10	Examples of Fermi particles are _____ a) Electrons, protons, neutrons b) Alpha particles c) Photons and phonons d) Deuterons	K2	CO5

Cont..

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Illustrate the errors and correction in a Mercury thermometer. (OR)	K3	CO1
	11.b.	Examine the Seebeck effect.		
2	12.a.	Explain in detail, Super conductivity. (OR)	K4	CO2
	12.b.	Examine the liquefaction of hydrogen with neat diagram.		
3	13.a.	How to determine the thermal conductivity (K) of a rod using Searle's method? (OR)	K5	CO3
	13.b.	Explain distribution of energy in the black body spectrum with neat diagram.		
4	14.a.	Using the first law of thermodynamics, prove that $C_p - C_v = R$ (OR)	K3	CO4
	14.b.	Find the efficiency of the Carnot's engine working between the steam point and the ice point.		
5	15.a.	Examine the Maxwell-Boltzmann distribution law. (OR)	K4	CO5
	15.b.	Explain the term 'photon gas'.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Explain in detail, the construction and working of Platinum resistance thermometer with neat diagram.	K4	CO1
2	17	Analyze the critical constants P_c , V_c & T_c derived from the Van der Waals equation and discuss their interrelationship.	K4	CO2
3	18	Illustrate the thermal conductivity of bad conductor by using Lee's disc method.	K4	CO3
4	19	Evaluate the efficiency of a Carnot heat engine with neat diagram.	K5	CO4
5	20	Compare the basic postulates of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.	K5	CO5