

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fourth Semester)

Branch - PHYSICS

OPTICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	When a lens is corrected to _____ coma. a) Spherical aberration b) Cylindrical aberration c) Astigmatism d) removal of coma	K1	CO1
	2	A spherical lens which is free from the defects of spherical aberration and coma is called _____. a) Aplanatic points b) Aplanatic lens c) Chromatic aberration d) On the above	K2	CO1
2	3	The Cardinal point of Huygens Eye piece a) $1/f=2/3f$ b) $1/f=3f/2$ c) $1/f=2f/2$ d) $1/f=2/f$	K1	CO2
	4	An eye -piece is a combination of lenses designed to magnify the image already formed by the objection of a _____. a) Telescope and microscope b) Spectrometer c) Microscope d) All of the above	K2	CO2
3	5	choose the correct expression for the diameter of dark rings in newton's ring experiment a) $D_n^2 = 4nR$ b) $D_n^2 = 2(2n-1)R$ c) $D_n^2 =$ d) D_n^2	K1	CO3
	6	In Fraunhofer diffraction the incident and diffracted wave fronts are _____. a) Not plane b) Spherical c) Cylindrical d) Plane	K2	CO3
4	7	The angle between plane of polarization and plane of vibration is _____. a) 180° b) 360° c) 90° d) 45°	K1	CO4
	8	Polarimeter is a device used to measure _____ of a substance . a) Polarity of the substance b) Angle of rotation of an optical active compound c) Concentration of the substance d) P_H of the substance	K2	CO4
5	9	The hologram acts somewhat like a simple periodic _____. a) Diffraction grating b) Diffraction grating c) Prism d) Interference	K1	CO5
	10	A hologram recorded in this manner is termed as _____. a) Fraunhofer hologram b) Amplitude hologram c) Transmission hologram d) Reflection hologram	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Derive abbe's sine condition for refraction at spherical surfaces. (OR)	K2 K3	CO1
	11.b.	Explain Chromatic aberration in lenses.		
2	12.a.	Compare Huygens's and Ramsden's eyepiece. (OR)	K2 K3	CO2
	12.b.	Describe the construction of constant deviation spectrometer.		
3	13.a.	Derive an expression for plane diffraction grating.. (OR)	K3 K4	CO3
	13.b.	Distinguish between Fresnel's diffraction and Fraunhofer diffraction.		
4	14.a.	Give the Huygen's theory of double refraction. (OR)	K2 K3	CO4
	14.b.	Explain the action of a quarter wave plate.		
5	15.a.	Explain optical fibre communication system with a block diagram. (OR)	K2	CO5
	15.b.	List of industrial applications and medical applications of fibre optics.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Explain about Chromatic Aberration in lenses and derive the condition for achromatism of two thin lenses separated by a distance.	K5	CO1
2	17	Derive an expression for the Ramsden's eyepiece.	K5	CO2
3	18	Give the theory of Fraunhofer diffraction at a single slit.	K3	CO3
4	19	Describe Laurent half shade polarimeter method of determining specific rotator power of a sugar solution.	K3	CO4
5	20	Describe the theory of construction and reconstruction of images using hologram.	K3	CO5