

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – PHYSICS

MATHEMATICS – I FOR PHYSICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	Parametric formula for Radius of Curvature _____. a) $\rho = \frac{(1-y_1^2)^{3/2}}{y_2}$ b) $\rho = \frac{(x'^2+y'^2)^{3/2}}{x'y''-y'x''}$ c) $\rho = \frac{(x'^2-y'^2)^{3/2}}{x'y''+y'x''}$ d) $\rho = \frac{(1+y_2^2)^{3/2}}{y_1}$	K1	CO1
	2	The locus of the centre of curvature is called: (a) Evolute (b) Envelope (c) Involute (d) Tangent	K2	CO1
2	3	$\int e^x \cos x \, dx$ is evaluated, using: (a) Direct formula (b) Substitution (c) Integration by parts (d) Partial fractions	K1	CO1
	4	Bernoulli's formula is used in: (a) Successive differentiation (b) Successive integration by parts (c) Partial fractions (d) Taylor expansion	K2	CO2
3	5	The area of a circle of radius 'a' using a double integral in polar coordinates is: (a) πa (b) πa^2 (c) $2\pi a$ (d) $2a$	K1	CO1
	6	The value of $\Gamma(1/2)$ is: (a) 1 (b) $\sqrt{\pi}$ (c) π (d) $1/\sqrt{\pi}$	K2	CO2
4	7	The directional derivative of a scalar function ϕ in the direction of a unit vector \hat{n} is: (a) $\nabla \cdot \phi \hat{n}$ (b) $\nabla \phi \cdot \hat{n}$ (c) $\phi \cdot \hat{n}$ (d) $\nabla \times \phi$	K1	CO1
	8	Curl of a gradient of any scalar function is always: (a) Scalar (b) Zero vector (c) Gradient (d) Divergence	K2	CO2
5	9	Stoke's theorem relates: (a) Surface integral of curl to line integral over boundary (b) Line integral to volume integral (c) Divergence to area integral (d) None of these	K1	CO1
	10	Line integral $\int_c \vec{F} \cdot d\vec{r}$ depends on path when: (a) $\nabla \times \vec{F} \neq 0$ (b) $\nabla \times \vec{F} = 0$ (c) $\nabla \cdot \vec{F} = 0$ (d) \vec{F} is conservative	K2	CO2

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Find the radius of curvature at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$ to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$. (OR)	K2	CO2
	11.b.	Find the envelope of the family of the curves $(x - a)^2 + y^2 = 4a$ where a is a parameter.		
2	12.a.	Obtain the reduction formula for $\int \cos^n x \, dx$ (OR)	K2	CO2
	12.b.	Evaluate $x^2 \tan^{-1} x$, by using integration by parts.		
3	13.a.	Find the area between the parabola $x^2 = 4y$ and the straight line $x - 2y + 4 = 0$. (OR)	K3	CO3
	13.b.	Show that $\Gamma(n+1) = n\Gamma(n)$.		
4	14.a.	If $\phi(x, y, z) = 3x^2 + 2y - 3z$, find $\nabla\phi$ and the directional derivative at $(1, 1, 1)$ in the direction of $2\vec{i} + 2\vec{j} - \vec{k}$. (OR)	K3	CO3
	14.b.	If $\vec{F} = (x+y+1)\vec{i} + \vec{j} - (x+y)\vec{k}$, Prove that $\vec{F} \cdot \operatorname{curl} \vec{F} = 0$.		
5	15.a.	If $\vec{F} = x^2\vec{i} + y^2\vec{j}$, evaluate $\int \vec{F} \cdot d\vec{r}$ from $(0, 0)$ to $(1, 1)$ along the line $y = x$. (OR)	K4	CO4
	15.b.	Evaluate $\iint \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = 18z\vec{i} - 12\vec{j} + 3y\vec{k}$, as S is part of the plane $2x + 3y + 6z = 12$ which is in the first octant.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Find the radius of curvature at the point θ on the curve $x = (\theta + \sin\theta), y = a(1 - \cos\theta)$.	K2	CO2
2	17	Derive an expression for $\int \sin^m x \cos^n x \, dx$ when both m and n are odd integers.	K2	CO2
3	18	Express $\int_0^1 x^m (1 - x^n)^p \, dx$ in terms of Gamma functions.	K3	CO3
4	19	Find a and b such that the surfaces $ax^2 - byz = (a+2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at $(1, -1, 2)$.	K3	CO3
5	20	Verify Greens theorem in a plane for the integral $\int_C \{(x - 2y)dx + x \, dy\}$, taken around the circle $x^2 + y^2 = 1$.	K4	CO4