

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch - PHYSICS

ASTROPHYSICS AND INDIAN SPACE SCIENCE / ASTROPHYSICS & PHILOSOPHY OF PHYSICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

$$(10 \times 1 = 10)$$

Cont..

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO		
1	11.a.	Calculate the force between two masses of 5 kg and 10 kg separated by 2 m using Newton's law of gravitation.	K3	CO1		
	(OR)					
	11.b.	Explain the contribution of Indian scientists like Jagdish Chandra Bose, G. N. Ramachandran to space science.				
2	12.a.	Determine the coordinates of a star using the Altazimuth System.	K3	CO2		
	(OR)					
3	12.b.	Discuss the photoelectric method of measuring apparent luminosity.	K4	CO3		
	13.a.	Derive the method for determining the trigonometric parallax of stars and explain cluster parallax.				
	(OR)					
4	13.b.	Analyze how secular parallax is used to determine stellar distances.	K3	CO4		
	14.a.	With neat diagram explain about Refracting Telescope.				
	(OR)					
5	14.b.	Discuss the physical properties and masses of stars with examples.	K4	CO5		
	15.a.	Classify stars based on their temperature and spectral characteristics using the Harvard system.				
	(OR)					
	15.b.	Explain the Schoenberg-Chandrasekhar limit for an isothermal stellar core.				

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Explain the motion of the Earth and Moon and how it causes lunar and solar eclipses.	K2	CO1
2	17	Illustrate the difference between Local Equatorial System and Universal Equatorial coordinate systems.	K3	CO2
3	18	Determine stellar distances using the spectroscopic parallax method.	K4	CO3
4	19	Compare reflecting and radio telescopes in measuring distance, size, and rotation.	K5	CO4
5	20	Analyze the internal structure of stars using the equations of stellar structure and polytrophic models.	K5	CO5