

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATIONS

CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	<p>The formula for the arc length L of a space curve defined by $r(t) = \langle f(t), g(t), h(t) \rangle$ for $a \leq t \leq b$ is _____.</p> <p>a) $L = \int_a^b r'(t) dt$ b) $L = \int_a^b r(t) dt$ c) $L = r'(t)$ d) $L = \int_a^b r(t) dt$</p>	K1	CO1
	2	<p>The position of a particle is given by $r(t) = \langle t^2, 5t, t^2 - 20t \rangle$. What is its velocity vector at $t = 2$?</p> <p>a) $\langle 4, 5, -16 \rangle$ b) $\langle 2, 5, 2 \rangle$ c) $\langle 4, 5, 4 \rangle$ d) $\langle 4, 5, -36 \rangle$</p>	K2	CO1
2	3	<p>For a function $z = f(x, y)$, the partial derivative with respect to x is defined as</p> <p>a) $\frac{\partial f}{\partial x} = \lim_{h \rightarrow 0} \frac{f(x+h, y) - f(x, y)}{h}$ b) $\frac{\partial f}{\partial x} = \lim_{h \rightarrow 0} \frac{f(x+h, y+h) - f(x, y)}{h}$ c) $\frac{\partial f}{\partial x} = \frac{df}{dx}$ d) $\frac{\partial f}{\partial x} = f(x, y) - f(x+h, y)$</p>	K1	CO2
	4	<p>For the function $f(x, y) = 5x^2 - 3xy + 3y^2$, calculate the value of $f_x(1, 2) + f_y(1, 2)$.</p> <p>a) 11 b) 13 c) 15 d) 17</p>	K2	CO2
3	5	<p>The method of Lagrange multipliers is used to find the extreme values of a function $f(x, y)$ subject to a constraint $g(x, y) = k$. The necessary condition is that at the extreme point _____.</p> <p>a) $\nabla f = 0$ and $\nabla g = 0$ b) $\nabla f = k \nabla g$ c) $\nabla f = \nabla g$ d) $\nabla f = \lambda \nabla g$ for some scalar λ</p>	K1	CO3
	6	<p>Use the method of Lagrange multipliers to set up the equations for minimizing $f(x, y) = x^2 + y^2$ subject to the constraint $x + 2y = 5$, is _____.</p> <p>a) $2x = \lambda, 2y = \lambda, x + 2y = 5$ b) $2x = \lambda, 2y = 2\lambda, x + 2y = 5$ c) $2x = 1, 2y = 2, x + 2y = 5$ d) $x^2 = \lambda, y^2 = 2\lambda, x + 2y = 5$</p>	K2	CO3
4	7	<p>When evaluating a double integral over a general region, the formula for the area of a small element dA in polar coordinates (r, θ) is _____.</p> <p>a) $dA = dr d\theta$ b) $dA = r dr d\theta$ c) $dA = r^2 dr d\theta$ d) $dA = r^2 \sin\theta dr d\theta$</p>	K1	CO4
	8	<p>Which of the following represents the double integral of $f(x, y)$ over the region bounded by $y = x^2$ and $y = 4$ as an iterated integral?</p> <p>a) $\int_{-2}^2 \int_2^4 f(x, y) dx dy$ b) $\int_0^4 \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx dy$ c) Both a and b d) $\int_0^4 \int_{x^2}^4 f(x, y) dx dy$</p>	K2	CO4
5	9	<p>In cylindrical coordinates, what is the relationship between the rectangular coordinates (x, y) and the cylindrical coordinates (r, θ)?</p> <p>a) $x = r \cos\theta, y = r \sin\theta$ b) $x = \rho \sin\phi \cos\theta, y = \rho \sin\phi \sin\theta$ c) $x = r, y = \theta$ d) $x = \cos\theta, y = \sin\theta$</p>	K1	CO5

Cont...

5	10	What is the volume element dV for a triple integral in rectangular coordinates? a) $dr d\theta dz$ b) $dx dy dz$ c) $\rho^2 \sin\phi d\rho d\phi d\theta$ d) $r dr d\theta dz$	K2	CO5
---	----	--	----	-----

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Find parametric equations for the curve of intersection of the paraboloid $4y = x^2 + y^2$ and the plane $y = x$, (OR)	K1	CO1
	11.b.	Find the length of the arc of the circular helix with vector equation $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ from $(1,0,0)$ to $(1,0,2\pi)$		
2	12.a.	Show that $f(x, y) = xe^{xy}$ is differential at $(1,0)$ and find its linearization. (OR)	K3	CO2
	12.b.	Show that the function $u(x, y) = e^x \sin y$ is a solution of Laplace equation		
3	13.a.	Use Chain rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ where $w = xy + yz + zx$, $x = r \cos \theta, y = r \sin \theta, z = r\theta$ when $r = 2, \theta = \pi/2$. (OR)	K1	CO3
	13.b.	Find the absolute maximum and minimum values of f on the set D where $f(x, y) = x + y - xy$, D is a closed triangular region with vertices $(0,0), (0,2), (4,0)$.		
4	14.a.	Deduce $\iint_R (x - 3y^2) dA$ where $R = \{(x, y) 0 \leq x \leq 2, 1 \leq y \leq 2\}$. (OR)	K4	CO4
	14.b.	Deduce the iterated integral by converting to polar coordinates. $\int_0^{1/2} \int_{\sqrt{3}y}^{\sqrt{1-y^2}} xy^2 dx dy$.		
5	15.a.	Deduce $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{-\sqrt{x^2+y^2}}^{\sqrt{x^2+y^2}} (x^2 + y^2) dz dy dx$ using cylindrical co-ordinates. (OR)	K4	CO5
	15.b.	Deduce $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$ where B is the unit ball: $B = \{(x, y, z) x^2 + y^2 + z^2 \leq 1\}$.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Sketch the curvature of the parabola $y = x^2$ at $(0,0), (1,1)$ and $(2,4)$.	K3	CO1
2	17	Sketch the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at $(1,1,3)$.	K3	CO2
3	18	Estimate the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.	K2	CO3
4	19	Find the mass and center of mass of a triangular lamina with vertices $(0,0), (1,0), (0,2)$ if the density function is $\rho(x, y) = 1 + 3x + y$.	K1	CO4
5	20	Evaluate the integral $\iint_R e^{(x+y)/(x-y)} dA$ where R is the trapezoidal region with vertices $(1,0), (2,0), (0,-2)$ and $(0,-1)$.	K6	CO5