

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Second Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATION

ANALYTICAL GEOMETRY OF 3D AND VECTOR CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	The equation of the plane making intercepts a, b, c on the axes OX, OY, OZ respectively is a) $ax + by + cz = 1$ b) $a/x + b/y + c/z = 1$ c) $x/a + y/b + z/c = 1$ d) $a/x + b/z = c$	K1	CO1
	2	The length of the perpendicular from the point (x_1, y_1, z_1) on the plane $ax + by + cz + d = 0$ is a) $\pm \frac{(ax_1 + by_1 + cz_1 + d)}{\sqrt{a^2 + b^2 + c^2}}$ b) $\pm \frac{(ax_1 + by_1 + cz_1)}{\sqrt{a^2 + b^2 + c^2}}$ c) $\pm \frac{(ax_1 + by_1 + cz_1 + d)}{\sqrt{a^2 + b^2 + c^2}}$ d) $\frac{(ax_1 + by_1 + cz_1 + d)}{3abc}$	K2	CO1
2	3	The equation of a straight line passing through two given points (x_1, y_1, z_1) and (x_2, y_2, z_2) is a) $(x - x_1)/(x_2 - x_1) = (y - y_1)/(y_2 - y_1) = (z - z_1)/(z_2 - z_1)$ b) $(x - x_1)/(x_2 - x_1) = (y - y_1)/(y_2 - y_1) = (z - z_1)/(z_2 - z_1)$ c) $x/(x_2 - x_1) = y/(y_2 - y_1) = z/(z_2 - z_1)$ d) $(x - x_1)/x_1 = (y - y_1)/y_1 = (z - z_1)/z_1$	K1	CO2
	4	To determine a straight line _____ geometrical conditions are necessary. a) 2 b) 3 c) 4 d) 5	K2	CO2
3	5	The radius of a sphere whose equation is $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ is a) $\sqrt{u^2 + v^2 + w^2 - d}$ b) $\sqrt{u^2 + v^2 - w^2 - d}$ c) $\sqrt{u^2 + v^2 - w^2}$ d) $\sqrt{u^2 + d - v^2}$	K1	CO3
	6	Intersection of two spheres is a a) Straight line b) Circle c) Triangle d) Parabola	K2	CO3
4	7	A _____ region in the plane is a connected region D such that every simple closed curve in D encloses only points that are in D . a) Loop b) Simply connected c) Multiply connected d) Punctured region	K1	CO4
	8	If ϕ is a function of three variables that has continuous second-order partial derivatives then: a) $\text{curl}(\nabla\phi) = 0$ b) $\text{curl}(\nabla\phi) = a$ c) $\nabla^2\phi = 0$ d) $\nabla^2\phi = C$	K2	CO4
5	9	A parametric representation for the cylinder, $x^2 + y^2 = 4, 0 \leq z \leq 1$, is _____ where $0 \leq \theta \leq 2\pi$ and $0 \leq z \leq 1$. a) $x = 2\cos\theta, y = 2\sin\theta, z = z$ b) $x = \cos\theta, y = \sin\theta, z = \theta$ c) $x = 2\cos\theta, y = \sin\theta, z = \tan\theta$ d) $x = 3\cos\theta, y = 2\sin\theta, z = z$	K1	CO5
	10	$\int_C F \cdot dr =$ a) $\int_S \text{curl } F \cdot ds$ b) $\text{curl} \int_S F \cdot ds$ c) $\iint_S \text{curl } F \cdot ds$ d) $\text{curl} \iint_S \text{curl } F \cdot ds$	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Find the equation of the plane passing through the points $(3,1,2)$, $(3,4,4)$ and perpendicular to the plane $5x + y + 4z = 0$. (OR)	K3	CO1
	11.b.	Find the equation of the plane through the line of intersection of the planes $x + y + z = 1$, $2x + 3y + 4z - 7 = 0$ and perpendicular to the plane $x - 5y + 3z = 5$.	K3	CO1
	12.a.	Find the perpendicular distance from the point $(3,9,-1)$ to the line $(x+8)/-8 = (y-31)/1 = (z-13)/5$. (OR)	K2	CO2
2	12.b.	Find the condition for the lines $ax+by+cz+d = 0 = a_1x + b_1y + c_1z + d_1$, $a_2x + b_2y + c_2z + d_2 = 0 = a_3x + b_3y + c_3z + d_3$ to be coplanar.	K2	CO2
	13.a.	Find the equation to the sphere through the four points $(2,3,1)$, $(5,-1,2)$, $(4,3,-1)$, $(2,5,3)$. (OR)	K3	CO3
3	13.b.	Show that the plane $2x - y - 2z = 16$ touches the sphere $x^2 + y^2 + z^2 - 4x + 2y + 2z - 3 = 0$ and find the point of contact.	K3	CO3
	14.a.	Evaluate $\int_C ydx + zdy + xdz$, where C consists of the line segment C_1 , from $(2,0,0)$ to $(3,4,5)$, followed by the vertical line segment C_2 from $(3,4,5)$ to $(3,4,0)$. (OR)	K4	CO4
4	14.b.	If $F(x, y, z) = y^2i + (2xy + e^{3z})j + 3ye^{3z}k$, find a function f such that $\nabla f = F$.	K4	CO4
	15.a.	Evaluate $\iint_S F \cdot ds$, where $F(x, y, z) = yi + xj + zk$ and S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane $z = 0$. (OR)	K4	CO5
	15.b.	Find the flux of the vector field $F(x, y, z) = zi + yj + xk$ over the unit sphere $x^2 + y^2 + z^2 = 1$.	K4	CO5

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Find the equation of the plane passing through the points $(2,-5,-3)$, $(-2,-3,5)$, and $(5,3,-3)$	K4	CO1
2	17	Find the locus of the mid-points of lines whose extremities are on two given lines and which are parallel to a given plane.	K4	CO2
3	18	Find the condition that the line $\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n}$ where $l^2 + m^2 + n^2 = 1$ should touch the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$. Show that there are two spheres through the points $(0,0,0)$, $(2a,0,0)$, $(0,2b,0)$ which touch the above line and that the distance between their centers is $\frac{2}{n^2} [c^2 - (a^2 + b^2 + c^2)n^2]^{1/2}$.	K4	CO3
4	19	State and prove Greens theorem.	K4	CO4
5	20	Evaluate $\iint_S z \cdot ds$, where S is the surface whose sides S_1 are given by the cylinder $x^2 + y^2 = 1$, whose bottom S_2 is the disk $x^2 + y^2 \leq 1$ in the plane $z = 0$ and whose top S_3 is the part of the plane $z = 1 + x$ that lies above S_2 .	K4	CO5