

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATION
ADVANCED MATHEMATICAL STATISTICS - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

(10 × 1 = 10)

Module No.	Question No.	Question	K Level	CO
1	1	The events whose outcomes have the same probability of occurrence are _____ events. a) Mutually exclusive b) Equally likely c) Dependent d) Complementary	K1	CO1
	2	In throwing two dice the probability of getting two numbers whose product is even is a) $\frac{1}{2}$ b) $\frac{3}{4}$ c) $\frac{1}{4}$ d) 0		
2	3	If X can take only integer values (0,1,2,...), then X is a _____ random variable. a) continuous b) discrete c) constant d) mixed	K1	CO2
	4	The probability of an event occurring given that another event has already occurred is a) conditional probability b) marginal probability c) joint probability d) independent probability		
3	5	Expectation of a constant 'C' is a) C b) 1 c) 0 d) Cx	K1	CO2
	6	If X is a random variable then $E[x-E(x)]$ is a) $E(x)$ b) $V(x)$ c) $E(x)-x$ d) 0		
4	7	The moment generating function is affected by change of a) origin b) scale c) both (a) and (b) d) neither (a) nor (b)	K1	CO3
	8	The characteristic function $\phi_x(t)$ is given by a) $E(e^{tx})$ b) $E(e^{itx})$ c) $E(tx)$ d) $E(itx)$		
5	9	If the mean and variance of binomial distribution is 12 and 4 then the probability of success is a) $2/3$ b) $4/3$ c) $1/3$ d) $3/4$	K1	CO4
	10	The odd order moments of normal distribution are a) μ b) σ c) 0 d) 1		

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks (5 × 7 = 35)

Module No.	Question No.	Question	K Level	CO
1	11.a.	List and prove the multiplication theorem on probability, and illustrate its application with a suitable example.	K4	CO1
		(OR)		
	11.b.	Three machines A, B, and C produce 30%, 45%, and 25% of the total items, with defect rates of 1%, 2%, and 3% respectively. If a randomly selected item is found defective, find the probabilities that it was produced by machines A, B, and C.		

Cont...

2	12.a.	Define distribution function. Explain any two properties of distribution function. (OR)	K2	CO2													
	12.b.	The following table gives the joint distribution function of two discrete random variables X and Y. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center; padding: 2px;">X \ Y</td> <td style="padding: 2px;">2</td> <td style="padding: 2px;">4</td> <td style="padding: 2px;">5</td> </tr> <tr> <td style="text-align: center; padding: 2px;">1</td> <td style="padding: 2px;">1/12</td> <td style="padding: 2px;">1/24</td> <td style="padding: 2px;">1/24</td> </tr> <tr> <td style="text-align: center; padding: 2px;">2</td> <td style="padding: 2px;">1/6</td> <td style="padding: 2px;">1/12</td> <td style="padding: 2px;">1/8</td> </tr> <tr> <td style="text-align: center; padding: 2px;">3</td> <td style="padding: 2px;">1/4</td> <td style="padding: 2px;">1/8</td> <td style="padding: 2px;">1/12</td> </tr> </table> Find (i) $P(X \leq 2, Y \leq 4)$; $P(Y \leq 5)$ (ii) Marginal probabilities of X and Y (iii) Conditional probability of $Y/X=1$.			X \ Y	2	4	5	1	1/12	1/24	1/24	2	1/6	1/12	1/8	3
X \ Y	2	4	5														
1	1/12	1/24	1/24														
2	1/6	1/12	1/8														
3	1/4	1/8	1/12														
3	13.a.	The random variable X has the following probability distribution where a and b are some constants: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center; padding: 2px;">X:</td> <td style="padding: 2px;">1</td> <td style="padding: 2px;">2</td> <td style="padding: 2px;">3</td> <td style="padding: 2px;">4</td> <td style="padding: 2px;">5</td> </tr> <tr> <td style="text-align: center; padding: 2px;">P(X=x)</td> <td style="padding: 2px;">0.2</td> <td style="padding: 2px;">a</td> <td style="padding: 2px;">a</td> <td style="padding: 2px;">0.2</td> <td style="padding: 2px;">b</td> </tr> </table> If the $E(x) = 3$, then find the values a and b.	X:	1	2	3	4	5	P(X=x)	0.2	a	a	0.2	b	K3	CO3	
X:	1	2	3	4	5												
P(X=x)	0.2	a	a	0.2	b												
	13.b.	(OR) Let X be a continuous random variable with pdf $f(x) = k(1 - x^2)$, $-1 \leq x \leq 1$ Find k, $E(X)$, and $V(X)$.															
4	14.a.	Distinguish between raw moments and central moments. Also state the limitations of mgf	K3	CO3													
	14.b.	(OR) Solve the following pdf and find the mgf, mean and variance. $f(x) = \begin{cases} x, & 0 \leq x \leq 1 \\ 2 - x, & 1 \leq x \leq 2 \\ 0, & \text{elsewhere} \end{cases}$															
5	15.a.	Derive the mean and variance of Binomial distribution.	K4	CO4													
	15.b.	(OR) The number of cars passing through a tollgate per minute follows a Poisson distribution with a mean of 4. Analyse and find the probability that (i) exactly 6 cars and (ii) less than 3 cars pass in a minute.															

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks (3 x 10 = 30)

Module No.	Question No.	Question	K Level	CO
1	16	State and prove the extension of addition theorem on probability for n events	K2	CO1
2	17	Prove that the geometric mean G of the distribution $f(x) = 6(2-x)(x-1)$, $1 \leq x \leq 2$ given by $6\log(16G) = 19$.	K3	CO2
3	18	Prove that $V(X) = E[V(X Y)] + V[E(X Y)]$	K3	CO3
4	19	Let the random variable X assume the value r with the probability law $P(X=r) = qr-1p$, $x=0,1,2,3, \dots$. Analyse and find the moment generating function of X and hence find its mean and variance.	K4	CO3
5	20	In a normal distribution, 25% of the items are below 60, and 10% are above 85. Analyse and find the mean and standard deviation of the distribution.	K4	CO4