

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Fifth Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATIONS

REAL ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	A real valued function is said to be strictly increasing if for any x, y in the domain of f , $x < y$, then _____. a) $f(x) < f(y)$ b) $f(x) > f(y)$ c) $f(x) = f(y)$ d) $f(x) > 0$	K1	CO1
	2	$\lim_{x \rightarrow 1} \sqrt{x+3} = _____.$ a) 2 b) 1 c) 4 d) 3	K2	CO1
2	3	A function is continuous at $a \in R$ if $\lim_{x \rightarrow a} f(x) = _____$. a) $f(a)$ b) ∞ c) 0 d) $f(-a)$	K1	CO2
	4	The set of all irrationals is of _____ category. a) first category b) second category c) n^{th} category d) third category	K2	CO2
3	5	If f is a continuous real valued function on $[a, b]$ then f takes every value between _____ and _____. a) $f(a) & f(b)$ b) $-\infty & \infty$ c) $0 & \infty$ d) $-\infty & 0$	K1	CO3
	6	Every bounded subset of R^2 is _____. a) totally bounded b) compact c) bounded d) unbounded	K2	CO3
4	7	If the metric M has the Heine Borel property then M is _____. a) compact b) bounded c) complete d) unbounded	K1	CO4
	8	Every finite subset of any metric space is _____. a) bounded b) totally bounded c) unbounded d) compact	K2	CO4
5	9	A bounded function has Riemann Integral if f is _____ almost every point. a) continuous b) differentiable c) both a & b d) none of the above	K1	CO5
	10	If $a < b$, then (a, b) is not of measure _____. a) 0 b) 1 c) -1 d) 2	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

$(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Prove that $\lim_{x \rightarrow a} [f(x) + g(x)] = L + M$, if $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$. (OR)	K3	CO1
	11.b.	If f is a monotonic function on (a, b) and $c \in (a, b)$ then $\lim_{x \rightarrow c^+} f(x)$ and $\lim_{x \rightarrow c^-} f(x)$ both exist.		

Cont...

2	12.a.	Prove that $g \circ f$ is continuous at 'a' if f, g are real valued and f is continuous at a and g is continuous at f(a).	K3	CO2		
	(OR)					
3	13.a.	If f is a continuous function from a metric space M_1 into M_2 and if M_1 is connected prove that the range of f is also connected.	K3	CO3		
	(OR)					
4	13.b.	Prove that, if the subset A of the metric space $\langle M, \rho \rangle$ is totally bounded then A is bounded.	K3	CO4		
	14.a.	If A is a closed subset of the compact metric $\langle M, \rho \rangle$ then prove that the metric space $\langle A, \rho \rangle$ is also compact.				
5	(OR)			CO5		
	14.b.	Prove that the range $f(M_1)$ of f is compact, where f is a continuous function from the compact metric space M_1 into M_2 .				
5	15.a.	State and prove Rolle's theorem.	K3	CO5		
	(OR)					
	15.b.	Prove that if $f \in ([a,b])$, then $ f \in R[a,b]$ and $\left \int_a^b f \right \leq \int_a^b f $.				

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Let $\langle M, \rho \rangle$ be a metric space and if $\{s_n\}_{n=1}^{n=\infty}$ is a convergent sequence of points of M then, prove that $\{s_n\}_{n=1}^{n=\infty}$ is Cauchy.	K3	CO1
2	17	Prove that $A \cup B$ is of the first category if A and B are sets of the first category.	K3	CO2
3	18	Prove that $A \subset M$ is totally bounded if and only if every sequence of points of A contains a Cauchy subsequence where $\langle M, \rho \rangle$ is a metric space.	K3	CO3
4	19	Prove that metric space M is compact if m has the Heine Borel property.	K3	CO4
5	20	Prove that f is continuous at c if the real valued function f has a derivative at $c \in R^1$.	K3	CO5