

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(First Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATIONS

ORDINARY DIFFERENTIAL EQUATIONS AND
LAPLACE TRANSFORMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Module No.	Question No.	Question	K Level	CO
1	1	The general solution y of the differential equation $\frac{dy}{dx} = k$, is _____. a) $y = Ce^{kt}$ b) $y = Ce^{-kt}$ c) $y = kCe^t$ d) $y = kt + C$	K2	CO1
	2	For Initial Value Problem $\frac{dy}{dx} = x - y$, $y(0) = 1$, using Euler's method with step size $h = 0.1$, $y(0.1)$ is _____. a) 0.90 b) 0.91 c) 0.99 d) 1.10	K2	CO1
2	3	If the roots r_1, r_2, \dots, r_n of the characteristic equation $a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0$ are real and distinct then the general solution of $a_n y^n + a_{n-1} y^{n-1} + \dots + a_1 y + a_0 = 0$ is a) $y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}$ b) $y(x) = c_1 e^{r_1 x} - c_2 e^{r_2 x} - \dots - c_n e^{r_n x}$ c) $y(x) = e^{r_1 x} + e^{r_2 x} + \dots + e^{r_n x}$ d) None	K2	CO2
	4	The existence and uniqueness theorem for $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$ guarantees a unique solution provided _____. a) F is continuous at (x_0, y_0) b) $\frac{\partial f}{\partial x}$ is continuous at (x_0, y_0) c) $\frac{\partial f}{\partial y}$ is continuous at (x_0, y_0) d) Both f and $\frac{\partial f}{\partial y}$ are continuous at x_0, y_0	K2	CO2
3	5	Which of the following differential equations is exact? a) $(y + x)dx + (x - y)dy = 0$ b) $(2xy + y^2)dx + (x^2 + 2x y)dy = 0$ c) $(x^2 + y)dx + (x^2 + y)dy = 0$ d) $(y^2 + x)dx + (2xy)dy = 0$	K2	CO3
	6	Which of the following linear equations forms the Bernoulli equation $\frac{dy}{dx} + \frac{1}{x}y = y^2$ under the substitution $u = y^{-1}$? a) $\frac{du}{dx} + \frac{1}{x}u = 1$ b) $\frac{du}{dx} - xu = -1$ c) $\frac{du}{dx} - \frac{1}{x}u = 1$ d) $\frac{du}{dx} + \frac{1}{x}u = -1$	K2	CO3
4	7	The general solution of $y'' - 4y + 4y = 0$ is a) $y = C_1 e^{2x} + C_2 e^{2x}$ b) $y = C_1 + C_2 x e^{-2x}$ c) $y = (C_1 + C_2 x)e^{2x}$ d) None	K2	CO4
	8	For the mass-spring-damper equation $y'' + 2y' + 5y = 0$, the system behaviour is a) Overdamped b) Critically damped c) Unstable d) underdamped	K2	CO4

Cont...

5	9	In using undetermined coefficients to solve $y'' - 2y + y = e^x$ the correct form of a particular solution y_p is _____. a) $y_p = A xe^x$ b) $y_p = A x^2 e^x$ c) $y_p = A x^2$ d) None	K2	CO5
	10	Which method is appropriate for finding a particular solution of $y'' + y = \sec x$? a) Undetermined coefficients b) Separation of variables c) Variation of parameters d) Exact equations	K2	CO5

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	CO
1	11.a.	Solve the initial value problem $\frac{dy}{dx} = 2x + 3$, $y(1) = 2$. (OR)	K3	CO1
	11.b.	Solve $\frac{dy}{dx} = \sqrt{x}$, $y(4) = 0$.		
2	12.a.	Derive the principle of Superposition for homogeneous equation. (OR)	K3	CO2
	12.b.	Show that the functions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$ and $y_3(x) = \sin 2x$ are linearly independent.		
3	13.a.	Find the general solution of fifth order differential equation, $9y^{(5)} - 6y^{(4)} + y^{(3)} = 0$. (OR)	K3	CO3
	13.b.	Suppose the RLC circuit with $I(0) = Q(0) = 0$, is connected at time $t = 0$ to a battery supplying a constant 110V then find the current in the circuit.		
4	14.a.	Derive the linearity of the Laplace Transform. (OR)	K2	CO4
	14.b.	Compute $\mathcal{L}\{t \sin kt\}$.		
5	15.a.	Express the convolution of $\cos t$ and $\sin t$ i.e., $(\cos t) * (\sin t)$ (OR)	K2	CO5
	15.b.	Compute $\mathcal{L}^{-1}\left\{\tan^{-1}\left(\frac{1}{s}\right)\right\}$.		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	CO
1	16	Show that the general solution of $(x^2 + 1) \frac{dy}{dx} + 3xy = 6x$.	K3	CO1
2	17	Elaborate and derive the Wronskians of solutions.	K3	CO2
3	18	Find the particular solution of $y'' + y = \tan x$.	K2	CO3
4	19	Consider a mass-and-spring system with $m = \frac{1}{2}$, $k = 17$, and $c = 3$ in mks units. As usual, let $x(t)$ denote the displacement of the mass m from its equilibrium position. If the mass is set in motion with $x(0) = 3$ and $x'(0) = 1$, find $x(t)$ for the resulting damped free oscillations.	K2	CO4
5	20	Find $\mathcal{L}\{(\sinh t)/t\}$.	K3	CO5