

PSG COLLEGE OF ARTS & SCIENCE
(AUTONOMOUS)

BSc DEGREE EXAMINATION DECEMBER 2025
(Third Semester)

Branch - MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS AND FOURIER TRANSFORMS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

$(10 \times 1 = 10)$

Question No.	Question	K Level	CO
1	What is the term for the variable in a first order partial differential equation? a) independent variable b) Constant variable c) dependent variable d) parameter variable	K2	CO1
2	Which is the quasi- linear PDE of first order? a) $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$ b) $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z^2$ c) $P(z) \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ d) $\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 = 1$	K1	CO1
3	When $B^2 > 4AC$, the slopes of the curves are _____ a) Imaginary b) Undefined c) Complex d) Real	K2	CO2
4	Which of the following is linear three-dimensional heat equation? a) $u_t = k(u_{xx} + u_{yy} + u_{zz})$ b) $u_{xx} + u_{yy} + u_{zz} = 0$ c) $u_t = c^2(u_{xx} + u_{yy} + u_{zz})$ d) $u_t + uu_x = \mu u_{xx}$	K1	CO2
5	If a function $f(x)$ satisfies the condition $f(x) = f(x+p)$ for all x , then $f(x)$ is called _____ a) Periodic function b) Linear function c) Constant function d) Exponential function	K2	CO3
6	The Fourier sine series is _____ a) $a_0 + \sum_{n=1}^{\infty} a_n \cos nx$ b) $a_0 + \sum_{n=1}^{\infty} a_n \sin nx$ c) $\sum_{n=1}^{\infty} a_n \cos nx$ d) $\sum_{n=1}^{\infty} a_n \sin nx$	K1	CO3
7	The Fourier cosine integral is _____ a) $f(x) = \int_0^{\infty} B(w) \sin wx dw$ b) $f(x) = - \int_0^{\infty} B(w) \sin wx dw$ c) $f(x) = \int_0^{\infty} A(w) \cos wx dw$ d) $f(x) = - \int_0^{\infty} A(w) \cos wx dw$	K1	CO4
8	The Fourier coefficients are called as _____ a) amplitude spectrum b) Time domain signal c) Frequency response d) Phase shift	K2	CO4
9	What is the value of the thermal conductivity k when the material is homogeneous and the temperature is non-extreme? a) Constant b) Zero c) Variable d) Infinite	K2	CO5
10	Which of the following equation represents the heat equation? a) $\frac{\partial u}{\partial t} = c^2 \nabla^2 u$ b) $\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$ c) $\frac{\partial u}{\partial t} = \frac{1}{c^2} \nabla^2 u$ d) $\frac{\partial^2 u}{\partial t^2} = \frac{1}{c^2} \nabla^2 u$	K1	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Question No.	Question	K Level	CO
11.a.	Find the partial differential equation of the family of planes, the sum of whose x, y, z intercepts is equal to unity. (OR)	K3	CO3
11.b.	Find the general integral of the linear PDE: $pz - qz = z^2 + (x + y)^2$		
12.a.	Reduce the equation $\sin^2(x)u_{xx} + \sin(2x)u_{xy} + \cos^2(x)u_{yy} = x$ to canonical form and hence solve it. (OR)	K2	CO2
12.b.	Solve the PDE $(x^2 D^2 + 2xyDD' + y^2 D'^2)u = x^2 y^2$.		
13.a.	Find the Fourier series of the function $f(x) = x + \pi$ if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$. (OR)	K4	CO4
13.b.	State and prove orthogonality of the Trigonometric system.		
14.a.	Find the Fourier cosine and sine transforms of the function $f(x) = \begin{cases} k & \text{if } 0 < x < a \\ 0 & \text{if } x > a \end{cases}$ (OR)	K3	CO3
14.b.	Find the Fourier transform $F(e^{-\alpha x})$ of $f(x) = e^{-\alpha x}$ if $x > 0$ and $f(x) = 0$ if $x < 0$; here $\alpha > 0$.		
15.a.	Find the temperature in the infinite bar if the initial temperature is $f(x) = \begin{cases} U_0 = \text{const} & \text{if } x < 1 \\ 0 & \text{if } x > 1 \end{cases}$ (OR)	K4	CO4
15.b.	Find the temperature $u(x, t)$ in a laterally insulated copper bar 80 cm long if the initial temperature is $100 \sin(\pi x/80)^\circ \text{C}$ and the ends are kept at 0°C . How long will it take for the maximum temperature in the bar to drop to 50°C ?		

SECTION - C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Question No.	Question	K Level	CO
16	Compute the complete integral of $(p^2 + q^2)y = qz$.	K4	CO4
17	Find the real function $u(x, y)$, which reduces to zero when $y=0$ and satisfy the PDE $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\pi(x^2 + y^2)$.	K4	CO4
18	Find the two half-range expansion of the function $f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$	K4	CO4
19	State and Prove Convolution theorem.	K4	CO4
20	Find the temperature in an Infinite bar.	K4	CO4